Solve for c
c=\frac{2x+1}{x+3}
x\neq -\frac{1}{2}\text{ and }x\neq -3
Solve for x
x=-\frac{1-3c}{2-c}
c\neq 2\text{ and }c\neq 0
Graph
Share
Copied to clipboard
1\left(2x+1\right)=cx+c\times 3
Variable c cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by c.
2x+1=cx+c\times 3
Use the distributive property to multiply 1 by 2x+1.
cx+c\times 3=2x+1
Swap sides so that all variable terms are on the left hand side.
\left(x+3\right)c=2x+1
Combine all terms containing c.
\frac{\left(x+3\right)c}{x+3}=\frac{2x+1}{x+3}
Divide both sides by x+3.
c=\frac{2x+1}{x+3}
Dividing by x+3 undoes the multiplication by x+3.
c=\frac{2x+1}{x+3}\text{, }c\neq 0
Variable c cannot be equal to 0.
1\left(2x+1\right)=cx+c\times 3
Multiply both sides of the equation by c.
2x+1=cx+c\times 3
Use the distributive property to multiply 1 by 2x+1.
2x+1-cx=c\times 3
Subtract cx from both sides.
2x-cx=c\times 3-1
Subtract 1 from both sides.
\left(2-c\right)x=c\times 3-1
Combine all terms containing x.
\left(2-c\right)x=3c-1
The equation is in standard form.
\frac{\left(2-c\right)x}{2-c}=\frac{3c-1}{2-c}
Divide both sides by 2-c.
x=\frac{3c-1}{2-c}
Dividing by 2-c undoes the multiplication by 2-c.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}