Solve for a
a=-\frac{3bc}{2c-b}
b\neq 0\text{ and }c\neq 0\text{ and }c\neq \frac{b}{2}
Solve for b
b=-\frac{2ac}{3c-a}
a\neq 0\text{ and }c\neq 0\text{ and }c\neq \frac{a}{3}
Share
Copied to clipboard
ab=bc\times 3+ac\times 2
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by abc, the least common multiple of c,a,b.
ab-ac\times 2=bc\times 3
Subtract ac\times 2 from both sides.
ab-2ac=bc\times 3
Multiply -1 and 2 to get -2.
\left(b-2c\right)a=bc\times 3
Combine all terms containing a.
\left(b-2c\right)a=3bc
The equation is in standard form.
\frac{\left(b-2c\right)a}{b-2c}=\frac{3bc}{b-2c}
Divide both sides by b-2c.
a=\frac{3bc}{b-2c}
Dividing by b-2c undoes the multiplication by b-2c.
a=\frac{3bc}{b-2c}\text{, }a\neq 0
Variable a cannot be equal to 0.
ab=bc\times 3+ac\times 2
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by abc, the least common multiple of c,a,b.
ab-bc\times 3=ac\times 2
Subtract bc\times 3 from both sides.
ab-3bc=ac\times 2
Multiply -1 and 3 to get -3.
\left(a-3c\right)b=ac\times 2
Combine all terms containing b.
\left(a-3c\right)b=2ac
The equation is in standard form.
\frac{\left(a-3c\right)b}{a-3c}=\frac{2ac}{a-3c}
Divide both sides by a-3c.
b=\frac{2ac}{a-3c}
Dividing by a-3c undoes the multiplication by a-3c.
b=\frac{2ac}{a-3c}\text{, }b\neq 0
Variable b cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}