Solve for c
c=\frac{20}{ms}
m\neq 0\text{ and }s\neq 0
Solve for m
m=\frac{20}{cs}
c\neq 0\text{ and }s\neq 0
Share
Copied to clipboard
1=\frac{1}{300}cm^{-1}s\times 15mm
Variable c cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by c.
1=\frac{1}{300}cm^{-1}s\times 15m^{2}
Multiply m and m to get m^{2}.
1=\frac{1}{300}cm^{1}s\times 15
To multiply powers of the same base, add their exponents. Add -1 and 2 to get 1.
1=\frac{1}{300}cms\times 15
Calculate m to the power of 1 and get m.
1=\frac{1}{20}cms
Multiply \frac{1}{300} and 15 to get \frac{1}{20}.
\frac{1}{20}cms=1
Swap sides so that all variable terms are on the left hand side.
\frac{ms}{20}c=1
The equation is in standard form.
\frac{20\times \frac{ms}{20}c}{ms}=\frac{20}{ms}
Divide both sides by \frac{1}{20}ms.
c=\frac{20}{ms}
Dividing by \frac{1}{20}ms undoes the multiplication by \frac{1}{20}ms.
c=\frac{20}{ms}\text{, }c\neq 0
Variable c cannot be equal to 0.
1=\frac{1}{300}cm^{-1}s\times 15mm
Multiply both sides of the equation by c.
1=\frac{1}{300}cm^{-1}s\times 15m^{2}
Multiply m and m to get m^{2}.
1=\frac{1}{300}cm^{1}s\times 15
To multiply powers of the same base, add their exponents. Add -1 and 2 to get 1.
1=\frac{1}{300}cms\times 15
Calculate m to the power of 1 and get m.
1=\frac{1}{20}cms
Multiply \frac{1}{300} and 15 to get \frac{1}{20}.
\frac{1}{20}cms=1
Swap sides so that all variable terms are on the left hand side.
\frac{cs}{20}m=1
The equation is in standard form.
\frac{20\times \frac{cs}{20}m}{cs}=\frac{20}{cs}
Divide both sides by \frac{1}{20}cs.
m=\frac{20}{cs}
Dividing by \frac{1}{20}cs undoes the multiplication by \frac{1}{20}cs.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}