Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{a-5}+\frac{a}{\left(a-5\right)\left(a+1\right)}+\frac{a+3}{a^{2}+2a+1}
Factor a^{2}-4a-5.
\frac{a+1}{\left(a-5\right)\left(a+1\right)}+\frac{a}{\left(a-5\right)\left(a+1\right)}+\frac{a+3}{a^{2}+2a+1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-5 and \left(a-5\right)\left(a+1\right) is \left(a-5\right)\left(a+1\right). Multiply \frac{1}{a-5} times \frac{a+1}{a+1}.
\frac{a+1+a}{\left(a-5\right)\left(a+1\right)}+\frac{a+3}{a^{2}+2a+1}
Since \frac{a+1}{\left(a-5\right)\left(a+1\right)} and \frac{a}{\left(a-5\right)\left(a+1\right)} have the same denominator, add them by adding their numerators.
\frac{2a+1}{\left(a-5\right)\left(a+1\right)}+\frac{a+3}{a^{2}+2a+1}
Combine like terms in a+1+a.
\frac{2a+1}{\left(a-5\right)\left(a+1\right)}+\frac{a+3}{\left(a+1\right)^{2}}
Factor a^{2}+2a+1.
\frac{\left(2a+1\right)\left(a+1\right)}{\left(a-5\right)\left(a+1\right)^{2}}+\frac{\left(a+3\right)\left(a-5\right)}{\left(a-5\right)\left(a+1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-5\right)\left(a+1\right) and \left(a+1\right)^{2} is \left(a-5\right)\left(a+1\right)^{2}. Multiply \frac{2a+1}{\left(a-5\right)\left(a+1\right)} times \frac{a+1}{a+1}. Multiply \frac{a+3}{\left(a+1\right)^{2}} times \frac{a-5}{a-5}.
\frac{\left(2a+1\right)\left(a+1\right)+\left(a+3\right)\left(a-5\right)}{\left(a-5\right)\left(a+1\right)^{2}}
Since \frac{\left(2a+1\right)\left(a+1\right)}{\left(a-5\right)\left(a+1\right)^{2}} and \frac{\left(a+3\right)\left(a-5\right)}{\left(a-5\right)\left(a+1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{2a^{2}+2a+a+1+a^{2}-5a+3a-15}{\left(a-5\right)\left(a+1\right)^{2}}
Do the multiplications in \left(2a+1\right)\left(a+1\right)+\left(a+3\right)\left(a-5\right).
\frac{3a^{2}+a-14}{\left(a-5\right)\left(a+1\right)^{2}}
Combine like terms in 2a^{2}+2a+a+1+a^{2}-5a+3a-15.
\frac{3a^{2}+a-14}{a^{3}-3a^{2}-9a-5}
Expand \left(a-5\right)\left(a+1\right)^{2}.
\frac{1}{a-5}+\frac{a}{\left(a-5\right)\left(a+1\right)}+\frac{a+3}{a^{2}+2a+1}
Factor a^{2}-4a-5.
\frac{a+1}{\left(a-5\right)\left(a+1\right)}+\frac{a}{\left(a-5\right)\left(a+1\right)}+\frac{a+3}{a^{2}+2a+1}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-5 and \left(a-5\right)\left(a+1\right) is \left(a-5\right)\left(a+1\right). Multiply \frac{1}{a-5} times \frac{a+1}{a+1}.
\frac{a+1+a}{\left(a-5\right)\left(a+1\right)}+\frac{a+3}{a^{2}+2a+1}
Since \frac{a+1}{\left(a-5\right)\left(a+1\right)} and \frac{a}{\left(a-5\right)\left(a+1\right)} have the same denominator, add them by adding their numerators.
\frac{2a+1}{\left(a-5\right)\left(a+1\right)}+\frac{a+3}{a^{2}+2a+1}
Combine like terms in a+1+a.
\frac{2a+1}{\left(a-5\right)\left(a+1\right)}+\frac{a+3}{\left(a+1\right)^{2}}
Factor a^{2}+2a+1.
\frac{\left(2a+1\right)\left(a+1\right)}{\left(a-5\right)\left(a+1\right)^{2}}+\frac{\left(a+3\right)\left(a-5\right)}{\left(a-5\right)\left(a+1\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-5\right)\left(a+1\right) and \left(a+1\right)^{2} is \left(a-5\right)\left(a+1\right)^{2}. Multiply \frac{2a+1}{\left(a-5\right)\left(a+1\right)} times \frac{a+1}{a+1}. Multiply \frac{a+3}{\left(a+1\right)^{2}} times \frac{a-5}{a-5}.
\frac{\left(2a+1\right)\left(a+1\right)+\left(a+3\right)\left(a-5\right)}{\left(a-5\right)\left(a+1\right)^{2}}
Since \frac{\left(2a+1\right)\left(a+1\right)}{\left(a-5\right)\left(a+1\right)^{2}} and \frac{\left(a+3\right)\left(a-5\right)}{\left(a-5\right)\left(a+1\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{2a^{2}+2a+a+1+a^{2}-5a+3a-15}{\left(a-5\right)\left(a+1\right)^{2}}
Do the multiplications in \left(2a+1\right)\left(a+1\right)+\left(a+3\right)\left(a-5\right).
\frac{3a^{2}+a-14}{\left(a-5\right)\left(a+1\right)^{2}}
Combine like terms in 2a^{2}+2a+a+1+a^{2}-5a+3a-15.
\frac{3a^{2}+a-14}{a^{3}-3a^{2}-9a-5}
Expand \left(a-5\right)\left(a+1\right)^{2}.