Solve for a
a = -\frac{6}{5} = -1\frac{1}{5} = -1.2
Share
Copied to clipboard
a+2+6a=\left(a-2\right)\times 2
Variable a cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by \left(a-2\right)\left(a+2\right), the least common multiple of a-2,a^{2}-4,a+2.
7a+2=\left(a-2\right)\times 2
Combine a and 6a to get 7a.
7a+2=2a-4
Use the distributive property to multiply a-2 by 2.
7a+2-2a=-4
Subtract 2a from both sides.
5a+2=-4
Combine 7a and -2a to get 5a.
5a=-4-2
Subtract 2 from both sides.
5a=-6
Subtract 2 from -4 to get -6.
a=\frac{-6}{5}
Divide both sides by 5.
a=-\frac{6}{5}
Fraction \frac{-6}{5} can be rewritten as -\frac{6}{5} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}