Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{a-1}-\frac{2}{a\left(a-2\right)}+\frac{1}{a^{2}-3a+2}
Factor a^{2}-2a.
\frac{a\left(a-2\right)}{a\left(a-2\right)\left(a-1\right)}-\frac{2\left(a-1\right)}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{a^{2}-3a+2}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-1 and a\left(a-2\right) is a\left(a-2\right)\left(a-1\right). Multiply \frac{1}{a-1} times \frac{a\left(a-2\right)}{a\left(a-2\right)}. Multiply \frac{2}{a\left(a-2\right)} times \frac{a-1}{a-1}.
\frac{a\left(a-2\right)-2\left(a-1\right)}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{a^{2}-3a+2}
Since \frac{a\left(a-2\right)}{a\left(a-2\right)\left(a-1\right)} and \frac{2\left(a-1\right)}{a\left(a-2\right)\left(a-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a^{2}-2a-2a+2}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{a^{2}-3a+2}
Do the multiplications in a\left(a-2\right)-2\left(a-1\right).
\frac{a^{2}-4a+2}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{a^{2}-3a+2}
Combine like terms in a^{2}-2a-2a+2.
\frac{a^{2}-4a+2}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{\left(a-2\right)\left(a-1\right)}
Factor a^{2}-3a+2.
\frac{a^{2}-4a+2}{a\left(a-2\right)\left(a-1\right)}+\frac{a}{a\left(a-2\right)\left(a-1\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a-2\right)\left(a-1\right) and \left(a-2\right)\left(a-1\right) is a\left(a-2\right)\left(a-1\right). Multiply \frac{1}{\left(a-2\right)\left(a-1\right)} times \frac{a}{a}.
\frac{a^{2}-4a+2+a}{a\left(a-2\right)\left(a-1\right)}
Since \frac{a^{2}-4a+2}{a\left(a-2\right)\left(a-1\right)} and \frac{a}{a\left(a-2\right)\left(a-1\right)} have the same denominator, add them by adding their numerators.
\frac{a^{2}-3a+2}{a\left(a-2\right)\left(a-1\right)}
Combine like terms in a^{2}-4a+2+a.
\frac{\left(a-2\right)\left(a-1\right)}{a\left(a-2\right)\left(a-1\right)}
Factor the expressions that are not already factored in \frac{a^{2}-3a+2}{a\left(a-2\right)\left(a-1\right)}.
\frac{1}{a}
Cancel out \left(a-2\right)\left(a-1\right) in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{a-1}-\frac{2}{a\left(a-2\right)}+\frac{1}{a^{2}-3a+2})
Factor a^{2}-2a.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a\left(a-2\right)}{a\left(a-2\right)\left(a-1\right)}-\frac{2\left(a-1\right)}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{a^{2}-3a+2})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a-1 and a\left(a-2\right) is a\left(a-2\right)\left(a-1\right). Multiply \frac{1}{a-1} times \frac{a\left(a-2\right)}{a\left(a-2\right)}. Multiply \frac{2}{a\left(a-2\right)} times \frac{a-1}{a-1}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a\left(a-2\right)-2\left(a-1\right)}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{a^{2}-3a+2})
Since \frac{a\left(a-2\right)}{a\left(a-2\right)\left(a-1\right)} and \frac{2\left(a-1\right)}{a\left(a-2\right)\left(a-1\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}-2a-2a+2}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{a^{2}-3a+2})
Do the multiplications in a\left(a-2\right)-2\left(a-1\right).
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}-4a+2}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{a^{2}-3a+2})
Combine like terms in a^{2}-2a-2a+2.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}-4a+2}{a\left(a-2\right)\left(a-1\right)}+\frac{1}{\left(a-2\right)\left(a-1\right)})
Factor a^{2}-3a+2.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}-4a+2}{a\left(a-2\right)\left(a-1\right)}+\frac{a}{a\left(a-2\right)\left(a-1\right)})
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a-2\right)\left(a-1\right) and \left(a-2\right)\left(a-1\right) is a\left(a-2\right)\left(a-1\right). Multiply \frac{1}{\left(a-2\right)\left(a-1\right)} times \frac{a}{a}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}-4a+2+a}{a\left(a-2\right)\left(a-1\right)})
Since \frac{a^{2}-4a+2}{a\left(a-2\right)\left(a-1\right)} and \frac{a}{a\left(a-2\right)\left(a-1\right)} have the same denominator, add them by adding their numerators.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}-3a+2}{a\left(a-2\right)\left(a-1\right)})
Combine like terms in a^{2}-4a+2+a.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\left(a-2\right)\left(a-1\right)}{a\left(a-2\right)\left(a-1\right)})
Factor the expressions that are not already factored in \frac{a^{2}-3a+2}{a\left(a-2\right)\left(a-1\right)}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{1}{a})
Cancel out \left(a-2\right)\left(a-1\right) in both numerator and denominator.
-a^{-1-1}
The derivative of ax^{n} is nax^{n-1}.
-a^{-2}
Subtract 1 from -1.