Solve for a
a = \frac{3}{2} = 1\frac{1}{2} = 1.5
Share
Copied to clipboard
a-2-\left(-a\times 3\right)=4
Variable a cannot be equal to any of the values 0,2 since division by zero is not defined. Multiply both sides of the equation by a\left(a-2\right), the least common multiple of a,2-a,a^{2}-2a.
a-2-\left(-3a\right)=4
Multiply -1 and 3 to get -3.
a-2+3a=4
The opposite of -3a is 3a.
4a-2=4
Combine a and 3a to get 4a.
4a=4+2
Add 2 to both sides.
4a=6
Add 4 and 2 to get 6.
a=\frac{6}{4}
Divide both sides by 4.
a=\frac{3}{2}
Reduce the fraction \frac{6}{4} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}