Solve for a
a=\frac{b\left(2-c\right)}{2-c-b}
c\neq 2\text{ and }b\neq 0\text{ and }b\neq 2-c
Solve for b
b=-\frac{a\left(2-c\right)}{-a+c-2}
c\neq 2\text{ and }a\neq 0\text{ and }a\neq -\left(2-c\right)
Quiz
Linear Equation
5 problems similar to:
\frac { 1 } { a } - \frac { 1 } { b } = \frac { 1 } { c - 2 }
Share
Copied to clipboard
b\left(c-2\right)-a\left(c-2\right)=ab
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by ab\left(c-2\right), the least common multiple of a,b,c-2.
bc-2b-a\left(c-2\right)=ab
Use the distributive property to multiply b by c-2.
bc-2b-\left(ac-2a\right)=ab
Use the distributive property to multiply a by c-2.
bc-2b-ac+2a=ab
To find the opposite of ac-2a, find the opposite of each term.
bc-2b-ac+2a-ab=0
Subtract ab from both sides.
-2b-ac+2a-ab=-bc
Subtract bc from both sides. Anything subtracted from zero gives its negation.
-ac+2a-ab=-bc+2b
Add 2b to both sides.
-ab-ac+2a=-bc+2b
Reorder the terms.
\left(-b-c+2\right)a=-bc+2b
Combine all terms containing a.
\left(2-c-b\right)a=2b-bc
The equation is in standard form.
\frac{\left(2-c-b\right)a}{2-c-b}=\frac{b\left(2-c\right)}{2-c-b}
Divide both sides by -b-c+2.
a=\frac{b\left(2-c\right)}{2-c-b}
Dividing by -b-c+2 undoes the multiplication by -b-c+2.
a=\frac{b\left(2-c\right)}{2-c-b}\text{, }a\neq 0
Variable a cannot be equal to 0.
b\left(c-2\right)-a\left(c-2\right)=ab
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by ab\left(c-2\right), the least common multiple of a,b,c-2.
bc-2b-a\left(c-2\right)=ab
Use the distributive property to multiply b by c-2.
bc-2b-\left(ac-2a\right)=ab
Use the distributive property to multiply a by c-2.
bc-2b-ac+2a=ab
To find the opposite of ac-2a, find the opposite of each term.
bc-2b-ac+2a-ab=0
Subtract ab from both sides.
bc-2b+2a-ab=ac
Add ac to both sides. Anything plus zero gives itself.
bc-2b-ab=ac-2a
Subtract 2a from both sides.
\left(c-2-a\right)b=ac-2a
Combine all terms containing b.
\left(-a+c-2\right)b=ac-2a
The equation is in standard form.
\frac{\left(-a+c-2\right)b}{-a+c-2}=\frac{a\left(c-2\right)}{-a+c-2}
Divide both sides by c-2-a.
b=\frac{a\left(c-2\right)}{-a+c-2}
Dividing by c-2-a undoes the multiplication by c-2-a.
b=\frac{a\left(c-2\right)}{-a+c-2}\text{, }b\neq 0
Variable b cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}