Solve for a
a=-\frac{bc}{b-c}
c\neq 0\text{ and }b\neq 0\text{ and }b\neq c
Solve for b
b=\frac{ac}{a+c}
c\neq 0\text{ and }a\neq 0\text{ and }a\neq -c
Share
Copied to clipboard
bc=ac-ab
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by abc, the least common multiple of a,b,c.
ac-ab=bc
Swap sides so that all variable terms are on the left hand side.
-ab+ac=bc
Reorder the terms.
\left(-b+c\right)a=bc
Combine all terms containing a.
\left(c-b\right)a=bc
The equation is in standard form.
\frac{\left(c-b\right)a}{c-b}=\frac{bc}{c-b}
Divide both sides by c-b.
a=\frac{bc}{c-b}
Dividing by c-b undoes the multiplication by c-b.
a=\frac{bc}{c-b}\text{, }a\neq 0
Variable a cannot be equal to 0.
bc=ac-ab
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by abc, the least common multiple of a,b,c.
bc+ab=ac
Add ab to both sides.
\left(c+a\right)b=ac
Combine all terms containing b.
\left(a+c\right)b=ac
The equation is in standard form.
\frac{\left(a+c\right)b}{a+c}=\frac{ac}{a+c}
Divide both sides by c+a.
b=\frac{ac}{a+c}
Dividing by c+a undoes the multiplication by c+a.
b=\frac{ac}{a+c}\text{, }b\neq 0
Variable b cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}