Solve for a
a=-\frac{4bc}{4c+4b-bc}
b\neq 0\text{ and }c\neq 0\text{ and }\left(c=4\text{ or }b\neq -\frac{4c}{4-c}\right)
Solve for b
b=-\frac{4ac}{4c+4a-ac}
a\neq 0\text{ and }c\neq 0\text{ and }\left(c=4\text{ or }a\neq -\frac{4c}{4-c}\right)
Share
Copied to clipboard
4bc+4ac+4ab=abc
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 4abc, the least common multiple of a,b,c,4.
4bc+4ac+4ab-abc=0
Subtract abc from both sides.
4ac+4ab-abc=-4bc
Subtract 4bc from both sides. Anything subtracted from zero gives its negation.
\left(4c+4b-bc\right)a=-4bc
Combine all terms containing a.
\frac{\left(4c+4b-bc\right)a}{4c+4b-bc}=-\frac{4bc}{4c+4b-bc}
Divide both sides by 4b+4c-bc.
a=-\frac{4bc}{4c+4b-bc}
Dividing by 4b+4c-bc undoes the multiplication by 4b+4c-bc.
a=-\frac{4bc}{4c+4b-bc}\text{, }a\neq 0
Variable a cannot be equal to 0.
4bc+4ac+4ab=abc
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 4abc, the least common multiple of a,b,c,4.
4bc+4ac+4ab-abc=0
Subtract abc from both sides.
4bc+4ab-abc=-4ac
Subtract 4ac from both sides. Anything subtracted from zero gives its negation.
\left(4c+4a-ac\right)b=-4ac
Combine all terms containing b.
\frac{\left(4c+4a-ac\right)b}{4c+4a-ac}=-\frac{4ac}{4c+4a-ac}
Divide both sides by 4a+4c-ac.
b=-\frac{4ac}{4c+4a-ac}
Dividing by 4a+4c-ac undoes the multiplication by 4a+4c-ac.
b=-\frac{4ac}{4c+4a-ac}\text{, }b\neq 0
Variable b cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}