Solve for A
A=\frac{5a\left(a+b\right)}{8\left(2a+b\right)}
a\neq -b\text{ and }a\neq 0\text{ and }a\neq -\frac{b}{2}
Solve for a
\left\{\begin{matrix}a=\frac{\sqrt{256A^{2}+25b^{2}}}{10}+\frac{8A}{5}-\frac{b}{2}\text{, }&\left(b\neq 0\text{ and }A\neq 0\right)\text{ or }A>0\\a=-\frac{\sqrt{256A^{2}+25b^{2}}}{10}+\frac{8A}{5}-\frac{b}{2}\text{, }&\left(b\neq 0\text{ and }A\neq 0\right)\text{ or }A<0\end{matrix}\right.
Share
Copied to clipboard
A\left(a+b\right)+Aa=a\left(a+b\right)\times \frac{5}{8}
Variable A cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by Aa\left(a+b\right), the least common multiple of a,a+b,A.
Aa+Ab+Aa=a\left(a+b\right)\times \frac{5}{8}
Use the distributive property to multiply A by a+b.
2Aa+Ab=a\left(a+b\right)\times \frac{5}{8}
Combine Aa and Aa to get 2Aa.
2Aa+Ab=\left(a^{2}+ab\right)\times \frac{5}{8}
Use the distributive property to multiply a by a+b.
2Aa+Ab=\frac{5}{8}a^{2}+\frac{5}{8}ab
Use the distributive property to multiply a^{2}+ab by \frac{5}{8}.
\left(2a+b\right)A=\frac{5}{8}a^{2}+\frac{5}{8}ab
Combine all terms containing A.
\left(2a+b\right)A=\frac{5a^{2}+5ab}{8}
The equation is in standard form.
\frac{\left(2a+b\right)A}{2a+b}=\frac{5a\left(a+b\right)}{8\left(2a+b\right)}
Divide both sides by 2a+b.
A=\frac{5a\left(a+b\right)}{8\left(2a+b\right)}
Dividing by 2a+b undoes the multiplication by 2a+b.
A=\frac{5a\left(a+b\right)}{8\left(2a+b\right)}\text{, }A\neq 0
Variable A cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}