Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\frac{a^{2}-a^{3}}{a^{2}-a}
Divide \frac{1}{a^{2}-a} by \frac{1}{a^{2}-a^{3}} by multiplying \frac{1}{a^{2}-a} by the reciprocal of \frac{1}{a^{2}-a^{3}}.
\frac{\left(-a+1\right)a^{2}}{a\left(a-1\right)}
Factor the expressions that are not already factored.
\frac{-\left(a-1\right)a^{2}}{a\left(a-1\right)}
Extract the negative sign in 1-a.
-a
Cancel out a\left(a-1\right) in both numerator and denominator.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{a^{2}-a^{3}}{a^{2}-a})
Divide \frac{1}{a^{2}-a} by \frac{1}{a^{2}-a^{3}} by multiplying \frac{1}{a^{2}-a} by the reciprocal of \frac{1}{a^{2}-a^{3}}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{\left(-a+1\right)a^{2}}{a\left(a-1\right)})
Factor the expressions that are not already factored in \frac{a^{2}-a^{3}}{a^{2}-a}.
\frac{\mathrm{d}}{\mathrm{d}a}(\frac{-\left(a-1\right)a^{2}}{a\left(a-1\right)})
Extract the negative sign in 1-a.
\frac{\mathrm{d}}{\mathrm{d}a}(-a)
Cancel out a\left(a-1\right) in both numerator and denominator.
-a^{1-1}
The derivative of ax^{n} is nax^{n-1}.
-a^{0}
Subtract 1 from 1.
-1
For any term t except 0, t^{0}=1.