Evaluate
-\frac{1}{a\left(a-3b\right)}
Differentiate w.r.t. a
\frac{2a-3b}{\left(a\left(a-3b\right)\right)^{2}}
Share
Copied to clipboard
\frac{1}{a\left(a+3b\right)}-\frac{2}{\left(a-3b\right)\left(a+3b\right)}
Factor a^{2}+3ab. Factor a^{2}-9b^{2}.
\frac{a-3b}{a\left(a-3b\right)\left(a+3b\right)}-\frac{2a}{a\left(a-3b\right)\left(a+3b\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a\left(a+3b\right) and \left(a-3b\right)\left(a+3b\right) is a\left(a-3b\right)\left(a+3b\right). Multiply \frac{1}{a\left(a+3b\right)} times \frac{a-3b}{a-3b}. Multiply \frac{2}{\left(a-3b\right)\left(a+3b\right)} times \frac{a}{a}.
\frac{a-3b-2a}{a\left(a-3b\right)\left(a+3b\right)}
Since \frac{a-3b}{a\left(a-3b\right)\left(a+3b\right)} and \frac{2a}{a\left(a-3b\right)\left(a+3b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-a-3b}{a\left(a-3b\right)\left(a+3b\right)}
Combine like terms in a-3b-2a.
\frac{-\left(a+3b\right)}{a\left(a-3b\right)\left(a+3b\right)}
Extract the negative sign in -a-3b.
\frac{-1}{a\left(a-3b\right)}
Cancel out a+3b in both numerator and denominator.
\frac{-1}{a^{2}-3ab}
Expand a\left(a-3b\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}