Evaluate
b+\frac{1}{a}
Expand
b+\frac{1}{a}
Share
Copied to clipboard
\frac{1}{a+b}+\frac{b\left(a+b\right)}{a+b}+\frac{b}{a\left(a+b\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply b times \frac{a+b}{a+b}.
\frac{1+b\left(a+b\right)}{a+b}+\frac{b}{a\left(a+b\right)}
Since \frac{1}{a+b} and \frac{b\left(a+b\right)}{a+b} have the same denominator, add them by adding their numerators.
\frac{1+ba+b^{2}}{a+b}+\frac{b}{a\left(a+b\right)}
Do the multiplications in 1+b\left(a+b\right).
\frac{\left(1+ba+b^{2}\right)a}{a\left(a+b\right)}+\frac{b}{a\left(a+b\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+b and a\left(a+b\right) is a\left(a+b\right). Multiply \frac{1+ba+b^{2}}{a+b} times \frac{a}{a}.
\frac{\left(1+ba+b^{2}\right)a+b}{a\left(a+b\right)}
Since \frac{\left(1+ba+b^{2}\right)a}{a\left(a+b\right)} and \frac{b}{a\left(a+b\right)} have the same denominator, add them by adding their numerators.
\frac{a+ba^{2}+b^{2}a+b}{a\left(a+b\right)}
Do the multiplications in \left(1+ba+b^{2}\right)a+b.
\frac{\left(a+b\right)\left(ab+1\right)}{a\left(a+b\right)}
Factor the expressions that are not already factored in \frac{a+ba^{2}+b^{2}a+b}{a\left(a+b\right)}.
\frac{ab+1}{a}
Cancel out a+b in both numerator and denominator.
\frac{1}{a+b}+\frac{b\left(a+b\right)}{a+b}+\frac{b}{a\left(a+b\right)}
To add or subtract expressions, expand them to make their denominators the same. Multiply b times \frac{a+b}{a+b}.
\frac{1+b\left(a+b\right)}{a+b}+\frac{b}{a\left(a+b\right)}
Since \frac{1}{a+b} and \frac{b\left(a+b\right)}{a+b} have the same denominator, add them by adding their numerators.
\frac{1+ba+b^{2}}{a+b}+\frac{b}{a\left(a+b\right)}
Do the multiplications in 1+b\left(a+b\right).
\frac{\left(1+ba+b^{2}\right)a}{a\left(a+b\right)}+\frac{b}{a\left(a+b\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+b and a\left(a+b\right) is a\left(a+b\right). Multiply \frac{1+ba+b^{2}}{a+b} times \frac{a}{a}.
\frac{\left(1+ba+b^{2}\right)a+b}{a\left(a+b\right)}
Since \frac{\left(1+ba+b^{2}\right)a}{a\left(a+b\right)} and \frac{b}{a\left(a+b\right)} have the same denominator, add them by adding their numerators.
\frac{a+ba^{2}+b^{2}a+b}{a\left(a+b\right)}
Do the multiplications in \left(1+ba+b^{2}\right)a+b.
\frac{\left(a+b\right)\left(ab+1\right)}{a\left(a+b\right)}
Factor the expressions that are not already factored in \frac{a+ba^{2}+b^{2}a+b}{a\left(a+b\right)}.
\frac{ab+1}{a}
Cancel out a+b in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}