Evaluate
\frac{3a-b}{\left(a-b-1\right)\left(2a+1\right)}
Expand
\frac{3a-b}{\left(a-b-1\right)\left(2a+1\right)}
Share
Copied to clipboard
\frac{1}{2a+1}+\frac{1}{a-\left(b+1\right)}
Combine a and a to get 2a.
\frac{-\left(b+1\right)+a}{\left(2a+1\right)\left(-\left(b+1\right)+a\right)}+\frac{2a+1}{\left(2a+1\right)\left(-\left(b+1\right)+a\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2a+1 and a-\left(b+1\right) is \left(2a+1\right)\left(-\left(b+1\right)+a\right). Multiply \frac{1}{2a+1} times \frac{-\left(b+1\right)+a}{-\left(b+1\right)+a}. Multiply \frac{1}{a-\left(b+1\right)} times \frac{2a+1}{2a+1}.
\frac{-\left(b+1\right)+a+2a+1}{\left(2a+1\right)\left(-\left(b+1\right)+a\right)}
Since \frac{-\left(b+1\right)+a}{\left(2a+1\right)\left(-\left(b+1\right)+a\right)} and \frac{2a+1}{\left(2a+1\right)\left(-\left(b+1\right)+a\right)} have the same denominator, add them by adding their numerators.
\frac{-b-1+a+2a+1}{\left(2a+1\right)\left(-\left(b+1\right)+a\right)}
Do the multiplications in -\left(b+1\right)+a+2a+1.
\frac{-b+3a}{\left(2a+1\right)\left(-\left(b+1\right)+a\right)}
Combine like terms in -b-1+a+2a+1.
\frac{-b+3a}{2a^{2}-2ab-a-b-1}
Expand \left(2a+1\right)\left(-\left(b+1\right)+a\right).
\frac{1}{2a+1}+\frac{1}{a-\left(b+1\right)}
Combine a and a to get 2a.
\frac{-\left(b+1\right)+a}{\left(2a+1\right)\left(-\left(b+1\right)+a\right)}+\frac{2a+1}{\left(2a+1\right)\left(-\left(b+1\right)+a\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2a+1 and a-\left(b+1\right) is \left(2a+1\right)\left(-\left(b+1\right)+a\right). Multiply \frac{1}{2a+1} times \frac{-\left(b+1\right)+a}{-\left(b+1\right)+a}. Multiply \frac{1}{a-\left(b+1\right)} times \frac{2a+1}{2a+1}.
\frac{-\left(b+1\right)+a+2a+1}{\left(2a+1\right)\left(-\left(b+1\right)+a\right)}
Since \frac{-\left(b+1\right)+a}{\left(2a+1\right)\left(-\left(b+1\right)+a\right)} and \frac{2a+1}{\left(2a+1\right)\left(-\left(b+1\right)+a\right)} have the same denominator, add them by adding their numerators.
\frac{-b-1+a+2a+1}{\left(2a+1\right)\left(-\left(b+1\right)+a\right)}
Do the multiplications in -\left(b+1\right)+a+2a+1.
\frac{-b+3a}{\left(2a+1\right)\left(-\left(b+1\right)+a\right)}
Combine like terms in -b-1+a+2a+1.
\frac{-b+3a}{2a^{2}-2ab-a-b-1}
Expand \left(2a+1\right)\left(-\left(b+1\right)+a\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}