Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{a+5b}-\frac{a}{a^{2}-25b^{2}}+\frac{46}{2a-10b}
Express \frac{1}{2a-10b}\times 46 as a single fraction.
\frac{1}{a+5b}-\frac{a}{\left(a-5b\right)\left(a+5b\right)}+\frac{46}{2a-10b}
Factor a^{2}-25b^{2}.
\frac{a-5b}{\left(a-5b\right)\left(a+5b\right)}-\frac{a}{\left(a-5b\right)\left(a+5b\right)}+\frac{46}{2a-10b}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+5b and \left(a-5b\right)\left(a+5b\right) is \left(a-5b\right)\left(a+5b\right). Multiply \frac{1}{a+5b} times \frac{a-5b}{a-5b}.
\frac{a-5b-a}{\left(a-5b\right)\left(a+5b\right)}+\frac{46}{2a-10b}
Since \frac{a-5b}{\left(a-5b\right)\left(a+5b\right)} and \frac{a}{\left(a-5b\right)\left(a+5b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-5b}{\left(a-5b\right)\left(a+5b\right)}+\frac{46}{2a-10b}
Combine like terms in a-5b-a.
\frac{-5b}{\left(a-5b\right)\left(a+5b\right)}+\frac{46}{2\left(a-5b\right)}
Factor 2a-10b.
\frac{2\left(-5\right)b}{2\left(a-5b\right)\left(a+5b\right)}+\frac{46\left(a+5b\right)}{2\left(a-5b\right)\left(a+5b\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-5b\right)\left(a+5b\right) and 2\left(a-5b\right) is 2\left(a-5b\right)\left(a+5b\right). Multiply \frac{-5b}{\left(a-5b\right)\left(a+5b\right)} times \frac{2}{2}. Multiply \frac{46}{2\left(a-5b\right)} times \frac{a+5b}{a+5b}.
\frac{2\left(-5\right)b+46\left(a+5b\right)}{2\left(a-5b\right)\left(a+5b\right)}
Since \frac{2\left(-5\right)b}{2\left(a-5b\right)\left(a+5b\right)} and \frac{46\left(a+5b\right)}{2\left(a-5b\right)\left(a+5b\right)} have the same denominator, add them by adding their numerators.
\frac{-10b+46a+230b}{2\left(a-5b\right)\left(a+5b\right)}
Do the multiplications in 2\left(-5\right)b+46\left(a+5b\right).
\frac{220b+46a}{2\left(a-5b\right)\left(a+5b\right)}
Combine like terms in -10b+46a+230b.
\frac{2\left(23a+110b\right)}{2\left(a-5b\right)\left(a+5b\right)}
Factor the expressions that are not already factored in \frac{220b+46a}{2\left(a-5b\right)\left(a+5b\right)}.
\frac{23a+110b}{\left(a-5b\right)\left(a+5b\right)}
Cancel out 2 in both numerator and denominator.
\frac{23a+110b}{a^{2}-25b^{2}}
Expand \left(a-5b\right)\left(a+5b\right).