Evaluate
\frac{3a^{3}-a^{2}+24a+110b-6}{a^{2}-25b^{2}}
Expand
-\frac{3a^{3}-a^{2}+24a+110b-6}{25b^{2}-a^{2}}
Share
Copied to clipboard
\frac{1}{a+5b}-\frac{a^{2}-3a^{3}+6}{a^{2}-25b^{2}}+\frac{1}{2a-10b}\times 46
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{1}{a+5b}-\frac{a^{2}-3a^{3}+6}{a^{2}-25b^{2}}+\frac{46}{2a-10b}
Express \frac{1}{2a-10b}\times 46 as a single fraction.
\frac{1}{a+5b}-\frac{a^{2}-3a^{3}+6}{\left(a-5b\right)\left(a+5b\right)}+\frac{46}{2a-10b}
Factor a^{2}-25b^{2}.
\frac{a-5b}{\left(a-5b\right)\left(a+5b\right)}-\frac{a^{2}-3a^{3}+6}{\left(a-5b\right)\left(a+5b\right)}+\frac{46}{2a-10b}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+5b and \left(a-5b\right)\left(a+5b\right) is \left(a-5b\right)\left(a+5b\right). Multiply \frac{1}{a+5b} times \frac{a-5b}{a-5b}.
\frac{a-5b-\left(a^{2}-3a^{3}+6\right)}{\left(a-5b\right)\left(a+5b\right)}+\frac{46}{2a-10b}
Since \frac{a-5b}{\left(a-5b\right)\left(a+5b\right)} and \frac{a^{2}-3a^{3}+6}{\left(a-5b\right)\left(a+5b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a-5b-a^{2}+3a^{3}-6}{\left(a-5b\right)\left(a+5b\right)}+\frac{46}{2a-10b}
Do the multiplications in a-5b-\left(a^{2}-3a^{3}+6\right).
\frac{a-5b-a^{2}+3a^{3}-6}{\left(a-5b\right)\left(a+5b\right)}+\frac{46}{2\left(a-5b\right)}
Factor 2a-10b.
\frac{2\left(a-5b-a^{2}+3a^{3}-6\right)}{2\left(a-5b\right)\left(a+5b\right)}+\frac{46\left(a+5b\right)}{2\left(a-5b\right)\left(a+5b\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-5b\right)\left(a+5b\right) and 2\left(a-5b\right) is 2\left(a-5b\right)\left(a+5b\right). Multiply \frac{a-5b-a^{2}+3a^{3}-6}{\left(a-5b\right)\left(a+5b\right)} times \frac{2}{2}. Multiply \frac{46}{2\left(a-5b\right)} times \frac{a+5b}{a+5b}.
\frac{2\left(a-5b-a^{2}+3a^{3}-6\right)+46\left(a+5b\right)}{2\left(a-5b\right)\left(a+5b\right)}
Since \frac{2\left(a-5b-a^{2}+3a^{3}-6\right)}{2\left(a-5b\right)\left(a+5b\right)} and \frac{46\left(a+5b\right)}{2\left(a-5b\right)\left(a+5b\right)} have the same denominator, add them by adding their numerators.
\frac{2a-10b-2a^{2}+6a^{3}-12+46a+230b}{2\left(a-5b\right)\left(a+5b\right)}
Do the multiplications in 2\left(a-5b-a^{2}+3a^{3}-6\right)+46\left(a+5b\right).
\frac{48a+220b-2a^{2}+6a^{3}-12}{2\left(a-5b\right)\left(a+5b\right)}
Combine like terms in 2a-10b-2a^{2}+6a^{3}-12+46a+230b.
\frac{2\left(3a^{3}-a^{2}+24a+110b-6\right)}{2\left(a-5b\right)\left(a+5b\right)}
Factor the expressions that are not already factored in \frac{48a+220b-2a^{2}+6a^{3}-12}{2\left(a-5b\right)\left(a+5b\right)}.
\frac{3a^{3}-a^{2}+24a+110b-6}{\left(a-5b\right)\left(a+5b\right)}
Cancel out 2 in both numerator and denominator.
\frac{3a^{3}-a^{2}+24a+110b-6}{a^{2}-25b^{2}}
Expand \left(a-5b\right)\left(a+5b\right).
\frac{1}{a+5b}-\frac{a^{2}-3a^{3}+6}{a^{2}-25b^{2}}+\frac{1}{2a-10b}\times 46
To multiply powers of the same base, add their exponents. Add 2 and 1 to get 3.
\frac{1}{a+5b}-\frac{a^{2}-3a^{3}+6}{a^{2}-25b^{2}}+\frac{46}{2a-10b}
Express \frac{1}{2a-10b}\times 46 as a single fraction.
\frac{1}{a+5b}-\frac{a^{2}-3a^{3}+6}{\left(a-5b\right)\left(a+5b\right)}+\frac{46}{2a-10b}
Factor a^{2}-25b^{2}.
\frac{a-5b}{\left(a-5b\right)\left(a+5b\right)}-\frac{a^{2}-3a^{3}+6}{\left(a-5b\right)\left(a+5b\right)}+\frac{46}{2a-10b}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+5b and \left(a-5b\right)\left(a+5b\right) is \left(a-5b\right)\left(a+5b\right). Multiply \frac{1}{a+5b} times \frac{a-5b}{a-5b}.
\frac{a-5b-\left(a^{2}-3a^{3}+6\right)}{\left(a-5b\right)\left(a+5b\right)}+\frac{46}{2a-10b}
Since \frac{a-5b}{\left(a-5b\right)\left(a+5b\right)} and \frac{a^{2}-3a^{3}+6}{\left(a-5b\right)\left(a+5b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a-5b-a^{2}+3a^{3}-6}{\left(a-5b\right)\left(a+5b\right)}+\frac{46}{2a-10b}
Do the multiplications in a-5b-\left(a^{2}-3a^{3}+6\right).
\frac{a-5b-a^{2}+3a^{3}-6}{\left(a-5b\right)\left(a+5b\right)}+\frac{46}{2\left(a-5b\right)}
Factor 2a-10b.
\frac{2\left(a-5b-a^{2}+3a^{3}-6\right)}{2\left(a-5b\right)\left(a+5b\right)}+\frac{46\left(a+5b\right)}{2\left(a-5b\right)\left(a+5b\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(a-5b\right)\left(a+5b\right) and 2\left(a-5b\right) is 2\left(a-5b\right)\left(a+5b\right). Multiply \frac{a-5b-a^{2}+3a^{3}-6}{\left(a-5b\right)\left(a+5b\right)} times \frac{2}{2}. Multiply \frac{46}{2\left(a-5b\right)} times \frac{a+5b}{a+5b}.
\frac{2\left(a-5b-a^{2}+3a^{3}-6\right)+46\left(a+5b\right)}{2\left(a-5b\right)\left(a+5b\right)}
Since \frac{2\left(a-5b-a^{2}+3a^{3}-6\right)}{2\left(a-5b\right)\left(a+5b\right)} and \frac{46\left(a+5b\right)}{2\left(a-5b\right)\left(a+5b\right)} have the same denominator, add them by adding their numerators.
\frac{2a-10b-2a^{2}+6a^{3}-12+46a+230b}{2\left(a-5b\right)\left(a+5b\right)}
Do the multiplications in 2\left(a-5b-a^{2}+3a^{3}-6\right)+46\left(a+5b\right).
\frac{48a+220b-2a^{2}+6a^{3}-12}{2\left(a-5b\right)\left(a+5b\right)}
Combine like terms in 2a-10b-2a^{2}+6a^{3}-12+46a+230b.
\frac{2\left(3a^{3}-a^{2}+24a+110b-6\right)}{2\left(a-5b\right)\left(a+5b\right)}
Factor the expressions that are not already factored in \frac{48a+220b-2a^{2}+6a^{3}-12}{2\left(a-5b\right)\left(a+5b\right)}.
\frac{3a^{3}-a^{2}+24a+110b-6}{\left(a-5b\right)\left(a+5b\right)}
Cancel out 2 in both numerator and denominator.
\frac{3a^{3}-a^{2}+24a+110b-6}{a^{2}-25b^{2}}
Expand \left(a-5b\right)\left(a+5b\right).
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}