Skip to main content
Evaluate
Tick mark Image
Differentiate w.r.t. a
Tick mark Image

Similar Problems from Web Search

Share

\frac{a-2}{\left(a-2\right)\left(a+2\right)}-\frac{a+2}{\left(a-2\right)\left(a+2\right)}+\frac{2}{a^{2}-4}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of a+2 and a-2 is \left(a-2\right)\left(a+2\right). Multiply \frac{1}{a+2} times \frac{a-2}{a-2}. Multiply \frac{1}{a-2} times \frac{a+2}{a+2}.
\frac{a-2-\left(a+2\right)}{\left(a-2\right)\left(a+2\right)}+\frac{2}{a^{2}-4}
Since \frac{a-2}{\left(a-2\right)\left(a+2\right)} and \frac{a+2}{\left(a-2\right)\left(a+2\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{a-2-a-2}{\left(a-2\right)\left(a+2\right)}+\frac{2}{a^{2}-4}
Do the multiplications in a-2-\left(a+2\right).
\frac{-4}{\left(a-2\right)\left(a+2\right)}+\frac{2}{a^{2}-4}
Combine like terms in a-2-a-2.
\frac{-4}{\left(a-2\right)\left(a+2\right)}+\frac{2}{\left(a-2\right)\left(a+2\right)}
Factor a^{2}-4.
\frac{-2}{\left(a-2\right)\left(a+2\right)}
Since \frac{-4}{\left(a-2\right)\left(a+2\right)} and \frac{2}{\left(a-2\right)\left(a+2\right)} have the same denominator, add them by adding their numerators. Add -4 and 2 to get -2.
\frac{-2}{a^{2}-4}
Expand \left(a-2\right)\left(a+2\right).