Skip to main content
Solve for a
Tick mark Image

Similar Problems from Web Search

Share

4a+8-\left(4a+4\right)=\left(a+1\right)\left(a+2\right)
Variable a cannot be equal to any of the values -2,-1 since division by zero is not defined. Multiply both sides of the equation by 4\left(a+1\right)\left(a+2\right), the least common multiple of a+1,a+2,4.
4a+8-4a-4=\left(a+1\right)\left(a+2\right)
To find the opposite of 4a+4, find the opposite of each term.
8-4=\left(a+1\right)\left(a+2\right)
Combine 4a and -4a to get 0.
4=\left(a+1\right)\left(a+2\right)
Subtract 4 from 8 to get 4.
4=a^{2}+3a+2
Use the distributive property to multiply a+1 by a+2 and combine like terms.
a^{2}+3a+2=4
Swap sides so that all variable terms are on the left hand side.
a^{2}+3a+2-4=0
Subtract 4 from both sides.
a^{2}+3a-2=0
Subtract 4 from 2 to get -2.
a=\frac{-3±\sqrt{3^{2}-4\left(-2\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 3 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-3±\sqrt{9-4\left(-2\right)}}{2}
Square 3.
a=\frac{-3±\sqrt{9+8}}{2}
Multiply -4 times -2.
a=\frac{-3±\sqrt{17}}{2}
Add 9 to 8.
a=\frac{\sqrt{17}-3}{2}
Now solve the equation a=\frac{-3±\sqrt{17}}{2} when ± is plus. Add -3 to \sqrt{17}.
a=\frac{-\sqrt{17}-3}{2}
Now solve the equation a=\frac{-3±\sqrt{17}}{2} when ± is minus. Subtract \sqrt{17} from -3.
a=\frac{\sqrt{17}-3}{2} a=\frac{-\sqrt{17}-3}{2}
The equation is now solved.
4a+8-\left(4a+4\right)=\left(a+1\right)\left(a+2\right)
Variable a cannot be equal to any of the values -2,-1 since division by zero is not defined. Multiply both sides of the equation by 4\left(a+1\right)\left(a+2\right), the least common multiple of a+1,a+2,4.
4a+8-4a-4=\left(a+1\right)\left(a+2\right)
To find the opposite of 4a+4, find the opposite of each term.
8-4=\left(a+1\right)\left(a+2\right)
Combine 4a and -4a to get 0.
4=\left(a+1\right)\left(a+2\right)
Subtract 4 from 8 to get 4.
4=a^{2}+3a+2
Use the distributive property to multiply a+1 by a+2 and combine like terms.
a^{2}+3a+2=4
Swap sides so that all variable terms are on the left hand side.
a^{2}+3a=4-2
Subtract 2 from both sides.
a^{2}+3a=2
Subtract 2 from 4 to get 2.
a^{2}+3a+\left(\frac{3}{2}\right)^{2}=2+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+3a+\frac{9}{4}=2+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
a^{2}+3a+\frac{9}{4}=\frac{17}{4}
Add 2 to \frac{9}{4}.
\left(a+\frac{3}{2}\right)^{2}=\frac{17}{4}
Factor a^{2}+3a+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{3}{2}\right)^{2}}=\sqrt{\frac{17}{4}}
Take the square root of both sides of the equation.
a+\frac{3}{2}=\frac{\sqrt{17}}{2} a+\frac{3}{2}=-\frac{\sqrt{17}}{2}
Simplify.
a=\frac{\sqrt{17}-3}{2} a=\frac{-\sqrt{17}-3}{2}
Subtract \frac{3}{2} from both sides of the equation.