Solve for a
a=\frac{\sqrt{17}-3}{2}\approx 0.561552813
a=\frac{-\sqrt{17}-3}{2}\approx -3.561552813
Share
Copied to clipboard
4a+8-\left(4a+4\right)=\left(a+1\right)\left(a+2\right)
Variable a cannot be equal to any of the values -2,-1 since division by zero is not defined. Multiply both sides of the equation by 4\left(a+1\right)\left(a+2\right), the least common multiple of a+1,a+2,4.
4a+8-4a-4=\left(a+1\right)\left(a+2\right)
To find the opposite of 4a+4, find the opposite of each term.
8-4=\left(a+1\right)\left(a+2\right)
Combine 4a and -4a to get 0.
4=\left(a+1\right)\left(a+2\right)
Subtract 4 from 8 to get 4.
4=a^{2}+3a+2
Use the distributive property to multiply a+1 by a+2 and combine like terms.
a^{2}+3a+2=4
Swap sides so that all variable terms are on the left hand side.
a^{2}+3a+2-4=0
Subtract 4 from both sides.
a^{2}+3a-2=0
Subtract 4 from 2 to get -2.
a=\frac{-3±\sqrt{3^{2}-4\left(-2\right)}}{2}
This equation is in standard form: ax^{2}+bx+c=0. Substitute 1 for a, 3 for b, and -2 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
a=\frac{-3±\sqrt{9-4\left(-2\right)}}{2}
Square 3.
a=\frac{-3±\sqrt{9+8}}{2}
Multiply -4 times -2.
a=\frac{-3±\sqrt{17}}{2}
Add 9 to 8.
a=\frac{\sqrt{17}-3}{2}
Now solve the equation a=\frac{-3±\sqrt{17}}{2} when ± is plus. Add -3 to \sqrt{17}.
a=\frac{-\sqrt{17}-3}{2}
Now solve the equation a=\frac{-3±\sqrt{17}}{2} when ± is minus. Subtract \sqrt{17} from -3.
a=\frac{\sqrt{17}-3}{2} a=\frac{-\sqrt{17}-3}{2}
The equation is now solved.
4a+8-\left(4a+4\right)=\left(a+1\right)\left(a+2\right)
Variable a cannot be equal to any of the values -2,-1 since division by zero is not defined. Multiply both sides of the equation by 4\left(a+1\right)\left(a+2\right), the least common multiple of a+1,a+2,4.
4a+8-4a-4=\left(a+1\right)\left(a+2\right)
To find the opposite of 4a+4, find the opposite of each term.
8-4=\left(a+1\right)\left(a+2\right)
Combine 4a and -4a to get 0.
4=\left(a+1\right)\left(a+2\right)
Subtract 4 from 8 to get 4.
4=a^{2}+3a+2
Use the distributive property to multiply a+1 by a+2 and combine like terms.
a^{2}+3a+2=4
Swap sides so that all variable terms are on the left hand side.
a^{2}+3a=4-2
Subtract 2 from both sides.
a^{2}+3a=2
Subtract 2 from 4 to get 2.
a^{2}+3a+\left(\frac{3}{2}\right)^{2}=2+\left(\frac{3}{2}\right)^{2}
Divide 3, the coefficient of the x term, by 2 to get \frac{3}{2}. Then add the square of \frac{3}{2} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
a^{2}+3a+\frac{9}{4}=2+\frac{9}{4}
Square \frac{3}{2} by squaring both the numerator and the denominator of the fraction.
a^{2}+3a+\frac{9}{4}=\frac{17}{4}
Add 2 to \frac{9}{4}.
\left(a+\frac{3}{2}\right)^{2}=\frac{17}{4}
Factor a^{2}+3a+\frac{9}{4}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(a+\frac{3}{2}\right)^{2}}=\sqrt{\frac{17}{4}}
Take the square root of both sides of the equation.
a+\frac{3}{2}=\frac{\sqrt{17}}{2} a+\frac{3}{2}=-\frac{\sqrt{17}}{2}
Simplify.
a=\frac{\sqrt{17}-3}{2} a=\frac{-\sqrt{17}-3}{2}
Subtract \frac{3}{2} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}