Solve for R_1
R_{1}=0.7
Share
Copied to clipboard
1=R_{1}\times \frac{1}{1.4}+R_{1}\times \frac{1}{1.4}
Variable R_{1} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by R_{1}.
1=R_{1}\times \frac{10}{14}+R_{1}\times \frac{1}{1.4}
Expand \frac{1}{1.4} by multiplying both numerator and the denominator by 10.
1=R_{1}\times \frac{5}{7}+R_{1}\times \frac{1}{1.4}
Reduce the fraction \frac{10}{14} to lowest terms by extracting and canceling out 2.
1=R_{1}\times \frac{5}{7}+R_{1}\times \frac{10}{14}
Expand \frac{1}{1.4} by multiplying both numerator and the denominator by 10.
1=R_{1}\times \frac{5}{7}+R_{1}\times \frac{5}{7}
Reduce the fraction \frac{10}{14} to lowest terms by extracting and canceling out 2.
1=\frac{10}{7}R_{1}
Combine R_{1}\times \frac{5}{7} and R_{1}\times \frac{5}{7} to get \frac{10}{7}R_{1}.
\frac{10}{7}R_{1}=1
Swap sides so that all variable terms are on the left hand side.
R_{1}=1\times \frac{7}{10}
Multiply both sides by \frac{7}{10}, the reciprocal of \frac{10}{7}.
R_{1}=\frac{7}{10}
Multiply 1 and \frac{7}{10} to get \frac{7}{10}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}