Solve for R
R=\frac{3}{2T}
T\neq 0
Solve for T
T=\frac{3}{2R}
R\neq 0
Share
Copied to clipboard
60=60RT\times \frac{1}{15}+60RT\times \frac{1}{60}+60RT\times \frac{11}{20}+60RT\times \frac{1}{30}
Variable R cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 60RT, the least common multiple of RT,15,60,20,30.
60=4RT+60RT\times \frac{1}{60}+60RT\times \frac{11}{20}+60RT\times \frac{1}{30}
Multiply 60 and \frac{1}{15} to get 4.
60=4RT+RT+60RT\times \frac{11}{20}+60RT\times \frac{1}{30}
Multiply 60 and \frac{1}{60} to get 1.
60=5RT+60RT\times \frac{11}{20}+60RT\times \frac{1}{30}
Combine 4RT and RT to get 5RT.
60=5RT+33RT+60RT\times \frac{1}{30}
Multiply 60 and \frac{11}{20} to get 33.
60=38RT+60RT\times \frac{1}{30}
Combine 5RT and 33RT to get 38RT.
60=38RT+2RT
Multiply 60 and \frac{1}{30} to get 2.
60=40RT
Combine 38RT and 2RT to get 40RT.
40RT=60
Swap sides so that all variable terms are on the left hand side.
40TR=60
The equation is in standard form.
\frac{40TR}{40T}=\frac{60}{40T}
Divide both sides by 40T.
R=\frac{60}{40T}
Dividing by 40T undoes the multiplication by 40T.
R=\frac{3}{2T}
Divide 60 by 40T.
R=\frac{3}{2T}\text{, }R\neq 0
Variable R cannot be equal to 0.
60=60RT\times \frac{1}{15}+60RT\times \frac{1}{60}+60RT\times \frac{11}{20}+60RT\times \frac{1}{30}
Variable T cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 60RT, the least common multiple of RT,15,60,20,30.
60=4RT+60RT\times \frac{1}{60}+60RT\times \frac{11}{20}+60RT\times \frac{1}{30}
Multiply 60 and \frac{1}{15} to get 4.
60=4RT+RT+60RT\times \frac{11}{20}+60RT\times \frac{1}{30}
Multiply 60 and \frac{1}{60} to get 1.
60=5RT+60RT\times \frac{11}{20}+60RT\times \frac{1}{30}
Combine 4RT and RT to get 5RT.
60=5RT+33RT+60RT\times \frac{1}{30}
Multiply 60 and \frac{11}{20} to get 33.
60=38RT+60RT\times \frac{1}{30}
Combine 5RT and 33RT to get 38RT.
60=38RT+2RT
Multiply 60 and \frac{1}{30} to get 2.
60=40RT
Combine 38RT and 2RT to get 40RT.
40RT=60
Swap sides so that all variable terms are on the left hand side.
\frac{40RT}{40R}=\frac{60}{40R}
Divide both sides by 40R.
T=\frac{60}{40R}
Dividing by 40R undoes the multiplication by 40R.
T=\frac{3}{2R}
Divide 60 by 40R.
T=\frac{3}{2R}\text{, }T\neq 0
Variable T cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}