Solve for R
R = \frac{9}{4} = 2\frac{1}{4} = 2.25
Share
Copied to clipboard
9=9R\times \frac{1}{9}+9R\times \frac{1}{3}
Variable R cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 9R, the least common multiple of R,9,3.
9=R+9R\times \frac{1}{3}
Cancel out 9 and 9.
9=R+\frac{9}{3}R
Multiply 9 and \frac{1}{3} to get \frac{9}{3}.
9=R+3R
Divide 9 by 3 to get 3.
9=4R
Combine R and 3R to get 4R.
4R=9
Swap sides so that all variable terms are on the left hand side.
R=\frac{9}{4}
Divide both sides by 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}