Solve for L
L=\frac{2L_{1}L_{2}}{L_{1}+2L_{2}}
L_{2}\neq 0\text{ and }L_{1}\neq 0\text{ and }L_{1}\neq -2L_{2}
Solve for L_1
L_{1}=-\frac{2LL_{2}}{L-2L_{2}}
L_{2}\neq 0\text{ and }L\neq 0\text{ and }L\neq 2L_{2}
Share
Copied to clipboard
2L_{1}L_{2}=2LL_{2}+LL_{1}
Variable L cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2LL_{1}L_{2}, the least common multiple of L,L_{1},2L_{2}.
2LL_{2}+LL_{1}=2L_{1}L_{2}
Swap sides so that all variable terms are on the left hand side.
\left(2L_{2}+L_{1}\right)L=2L_{1}L_{2}
Combine all terms containing L.
\left(L_{1}+2L_{2}\right)L=2L_{1}L_{2}
The equation is in standard form.
\frac{\left(L_{1}+2L_{2}\right)L}{L_{1}+2L_{2}}=\frac{2L_{1}L_{2}}{L_{1}+2L_{2}}
Divide both sides by L_{1}+2L_{2}.
L=\frac{2L_{1}L_{2}}{L_{1}+2L_{2}}
Dividing by L_{1}+2L_{2} undoes the multiplication by L_{1}+2L_{2}.
L=\frac{2L_{1}L_{2}}{L_{1}+2L_{2}}\text{, }L\neq 0
Variable L cannot be equal to 0.
2L_{1}L_{2}=2LL_{2}+LL_{1}
Variable L_{1} cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 2LL_{1}L_{2}, the least common multiple of L,L_{1},2L_{2}.
2L_{1}L_{2}-LL_{1}=2LL_{2}
Subtract LL_{1} from both sides.
\left(2L_{2}-L\right)L_{1}=2LL_{2}
Combine all terms containing L_{1}.
\frac{\left(2L_{2}-L\right)L_{1}}{2L_{2}-L}=\frac{2LL_{2}}{2L_{2}-L}
Divide both sides by 2L_{2}-L.
L_{1}=\frac{2LL_{2}}{2L_{2}-L}
Dividing by 2L_{2}-L undoes the multiplication by 2L_{2}-L.
L_{1}=\frac{2LL_{2}}{2L_{2}-L}\text{, }L_{1}\neq 0
Variable L_{1} cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}