Solve for F
F=-\frac{1}{b-a}
a\neq b
Solve for a
a=b+\frac{1}{F}
F\neq 0
Share
Copied to clipboard
1=Fa-bF
Variable F cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by F.
Fa-bF=1
Swap sides so that all variable terms are on the left hand side.
\left(a-b\right)F=1
Combine all terms containing F.
\frac{\left(a-b\right)F}{a-b}=\frac{1}{a-b}
Divide both sides by a-b.
F=\frac{1}{a-b}
Dividing by a-b undoes the multiplication by a-b.
F=\frac{1}{a-b}\text{, }F\neq 0
Variable F cannot be equal to 0.
1=Fa-bF
Multiply both sides of the equation by F.
Fa-bF=1
Swap sides so that all variable terms are on the left hand side.
Fa=1+bF
Add bF to both sides.
Fa=Fb+1
The equation is in standard form.
\frac{Fa}{F}=\frac{Fb+1}{F}
Divide both sides by F.
a=\frac{Fb+1}{F}
Dividing by F undoes the multiplication by F.
a=b+\frac{1}{F}
Divide 1+Fb by F.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}