Solve for C
C=\frac{1}{DR\omega }
R\neq 0\text{ and }D\neq 0\text{ and }\omega \neq 0
Solve for D
D=\frac{1}{CR\omega }
R\neq 0\text{ and }C\neq 0\text{ and }\omega \neq 0
Share
Copied to clipboard
1=DRC\omega
Variable C cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by C\omega .
DRC\omega =1
Swap sides so that all variable terms are on the left hand side.
DR\omega C=1
The equation is in standard form.
\frac{DR\omega C}{DR\omega }=\frac{1}{DR\omega }
Divide both sides by DR\omega .
C=\frac{1}{DR\omega }
Dividing by DR\omega undoes the multiplication by DR\omega .
C=\frac{1}{DR\omega }\text{, }C\neq 0
Variable C cannot be equal to 0.
1=DRC\omega
Multiply both sides of the equation by C\omega .
DRC\omega =1
Swap sides so that all variable terms are on the left hand side.
CR\omega D=1
The equation is in standard form.
\frac{CR\omega D}{CR\omega }=\frac{1}{CR\omega }
Divide both sides by RC\omega .
D=\frac{1}{CR\omega }
Dividing by RC\omega undoes the multiplication by RC\omega .
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}