Solve for A
A=-\frac{BC}{B-C}
C\neq 0\text{ and }B\neq 0\text{ and }B\neq C
Solve for B
B=\frac{AC}{A+C}
C\neq 0\text{ and }A\neq 0\text{ and }A\neq -C
Share
Copied to clipboard
BC=AC-AB
Variable A cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by ABC, the least common multiple of A,B,C.
AC-AB=BC
Swap sides so that all variable terms are on the left hand side.
-AB+AC=BC
Reorder the terms.
\left(-B+C\right)A=BC
Combine all terms containing A.
\left(C-B\right)A=BC
The equation is in standard form.
\frac{\left(C-B\right)A}{C-B}=\frac{BC}{C-B}
Divide both sides by C-B.
A=\frac{BC}{C-B}
Dividing by C-B undoes the multiplication by C-B.
A=\frac{BC}{C-B}\text{, }A\neq 0
Variable A cannot be equal to 0.
BC=AC-AB
Variable B cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by ABC, the least common multiple of A,B,C.
BC+AB=AC
Add AB to both sides.
\left(C+A\right)B=AC
Combine all terms containing B.
\left(A+C\right)B=AC
The equation is in standard form.
\frac{\left(A+C\right)B}{A+C}=\frac{AC}{A+C}
Divide both sides by C+A.
B=\frac{AC}{A+C}
Dividing by C+A undoes the multiplication by C+A.
B=\frac{AC}{A+C}\text{, }B\neq 0
Variable B cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}