Solve for x
x = -\frac{4}{3} = -1\frac{1}{3} \approx -1.333333333
Graph
Share
Copied to clipboard
1=3\left(3x-1\right)\times \frac{1}{3}+3\times 2
Variable x cannot be equal to \frac{1}{3} since division by zero is not defined. Multiply both sides of the equation by 3\left(3x-1\right), the least common multiple of 9x-3,3,1-3x.
1=3x-1+3\times 2
Multiply 3 and \frac{1}{3} to get 1.
1=3x-1+6
Multiply 3 and 2 to get 6.
1=3x+5
Add -1 and 6 to get 5.
3x+5=1
Swap sides so that all variable terms are on the left hand side.
3x=1-5
Subtract 5 from both sides.
3x=-4
Subtract 5 from 1 to get -4.
x=\frac{-4}{3}
Divide both sides by 3.
x=-\frac{4}{3}
Fraction \frac{-4}{3} can be rewritten as -\frac{4}{3} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}