Solve for x
x=-\frac{2}{15}\approx -0.133333333
x=2
Graph
Share
Copied to clipboard
5x+10+\left(3x-1\right)\times 16=5\left(x+2\right)\left(3x-1\right)
Variable x cannot be equal to any of the values -2,\frac{1}{3} since division by zero is not defined. Multiply both sides of the equation by 5\left(x+2\right)\left(3x-1\right)^{2}, the least common multiple of 9x^{2}-6x+1,15x^{2}+25x-10,3x-1.
5x+10+48x-16=5\left(x+2\right)\left(3x-1\right)
Use the distributive property to multiply 3x-1 by 16.
53x+10-16=5\left(x+2\right)\left(3x-1\right)
Combine 5x and 48x to get 53x.
53x-6=5\left(x+2\right)\left(3x-1\right)
Subtract 16 from 10 to get -6.
53x-6=\left(5x+10\right)\left(3x-1\right)
Use the distributive property to multiply 5 by x+2.
53x-6=15x^{2}+25x-10
Use the distributive property to multiply 5x+10 by 3x-1 and combine like terms.
53x-6-15x^{2}=25x-10
Subtract 15x^{2} from both sides.
53x-6-15x^{2}-25x=-10
Subtract 25x from both sides.
28x-6-15x^{2}=-10
Combine 53x and -25x to get 28x.
28x-6-15x^{2}+10=0
Add 10 to both sides.
28x+4-15x^{2}=0
Add -6 and 10 to get 4.
-15x^{2}+28x+4=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=28 ab=-15\times 4=-60
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -15x^{2}+ax+bx+4. To find a and b, set up a system to be solved.
-1,60 -2,30 -3,20 -4,15 -5,12 -6,10
Since ab is negative, a and b have the opposite signs. Since a+b is positive, the positive number has greater absolute value than the negative. List all such integer pairs that give product -60.
-1+60=59 -2+30=28 -3+20=17 -4+15=11 -5+12=7 -6+10=4
Calculate the sum for each pair.
a=30 b=-2
The solution is the pair that gives sum 28.
\left(-15x^{2}+30x\right)+\left(-2x+4\right)
Rewrite -15x^{2}+28x+4 as \left(-15x^{2}+30x\right)+\left(-2x+4\right).
15x\left(-x+2\right)+2\left(-x+2\right)
Factor out 15x in the first and 2 in the second group.
\left(-x+2\right)\left(15x+2\right)
Factor out common term -x+2 by using distributive property.
x=2 x=-\frac{2}{15}
To find equation solutions, solve -x+2=0 and 15x+2=0.
5x+10+\left(3x-1\right)\times 16=5\left(x+2\right)\left(3x-1\right)
Variable x cannot be equal to any of the values -2,\frac{1}{3} since division by zero is not defined. Multiply both sides of the equation by 5\left(x+2\right)\left(3x-1\right)^{2}, the least common multiple of 9x^{2}-6x+1,15x^{2}+25x-10,3x-1.
5x+10+48x-16=5\left(x+2\right)\left(3x-1\right)
Use the distributive property to multiply 3x-1 by 16.
53x+10-16=5\left(x+2\right)\left(3x-1\right)
Combine 5x and 48x to get 53x.
53x-6=5\left(x+2\right)\left(3x-1\right)
Subtract 16 from 10 to get -6.
53x-6=\left(5x+10\right)\left(3x-1\right)
Use the distributive property to multiply 5 by x+2.
53x-6=15x^{2}+25x-10
Use the distributive property to multiply 5x+10 by 3x-1 and combine like terms.
53x-6-15x^{2}=25x-10
Subtract 15x^{2} from both sides.
53x-6-15x^{2}-25x=-10
Subtract 25x from both sides.
28x-6-15x^{2}=-10
Combine 53x and -25x to get 28x.
28x-6-15x^{2}+10=0
Add 10 to both sides.
28x+4-15x^{2}=0
Add -6 and 10 to get 4.
-15x^{2}+28x+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-28±\sqrt{28^{2}-4\left(-15\right)\times 4}}{2\left(-15\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -15 for a, 28 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-28±\sqrt{784-4\left(-15\right)\times 4}}{2\left(-15\right)}
Square 28.
x=\frac{-28±\sqrt{784+60\times 4}}{2\left(-15\right)}
Multiply -4 times -15.
x=\frac{-28±\sqrt{784+240}}{2\left(-15\right)}
Multiply 60 times 4.
x=\frac{-28±\sqrt{1024}}{2\left(-15\right)}
Add 784 to 240.
x=\frac{-28±32}{2\left(-15\right)}
Take the square root of 1024.
x=\frac{-28±32}{-30}
Multiply 2 times -15.
x=\frac{4}{-30}
Now solve the equation x=\frac{-28±32}{-30} when ± is plus. Add -28 to 32.
x=-\frac{2}{15}
Reduce the fraction \frac{4}{-30} to lowest terms by extracting and canceling out 2.
x=-\frac{60}{-30}
Now solve the equation x=\frac{-28±32}{-30} when ± is minus. Subtract 32 from -28.
x=2
Divide -60 by -30.
x=-\frac{2}{15} x=2
The equation is now solved.
5x+10+\left(3x-1\right)\times 16=5\left(x+2\right)\left(3x-1\right)
Variable x cannot be equal to any of the values -2,\frac{1}{3} since division by zero is not defined. Multiply both sides of the equation by 5\left(x+2\right)\left(3x-1\right)^{2}, the least common multiple of 9x^{2}-6x+1,15x^{2}+25x-10,3x-1.
5x+10+48x-16=5\left(x+2\right)\left(3x-1\right)
Use the distributive property to multiply 3x-1 by 16.
53x+10-16=5\left(x+2\right)\left(3x-1\right)
Combine 5x and 48x to get 53x.
53x-6=5\left(x+2\right)\left(3x-1\right)
Subtract 16 from 10 to get -6.
53x-6=\left(5x+10\right)\left(3x-1\right)
Use the distributive property to multiply 5 by x+2.
53x-6=15x^{2}+25x-10
Use the distributive property to multiply 5x+10 by 3x-1 and combine like terms.
53x-6-15x^{2}=25x-10
Subtract 15x^{2} from both sides.
53x-6-15x^{2}-25x=-10
Subtract 25x from both sides.
28x-6-15x^{2}=-10
Combine 53x and -25x to get 28x.
28x-15x^{2}=-10+6
Add 6 to both sides.
28x-15x^{2}=-4
Add -10 and 6 to get -4.
-15x^{2}+28x=-4
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{-15x^{2}+28x}{-15}=-\frac{4}{-15}
Divide both sides by -15.
x^{2}+\frac{28}{-15}x=-\frac{4}{-15}
Dividing by -15 undoes the multiplication by -15.
x^{2}-\frac{28}{15}x=-\frac{4}{-15}
Divide 28 by -15.
x^{2}-\frac{28}{15}x=\frac{4}{15}
Divide -4 by -15.
x^{2}-\frac{28}{15}x+\left(-\frac{14}{15}\right)^{2}=\frac{4}{15}+\left(-\frac{14}{15}\right)^{2}
Divide -\frac{28}{15}, the coefficient of the x term, by 2 to get -\frac{14}{15}. Then add the square of -\frac{14}{15} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{28}{15}x+\frac{196}{225}=\frac{4}{15}+\frac{196}{225}
Square -\frac{14}{15} by squaring both the numerator and the denominator of the fraction.
x^{2}-\frac{28}{15}x+\frac{196}{225}=\frac{256}{225}
Add \frac{4}{15} to \frac{196}{225} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x-\frac{14}{15}\right)^{2}=\frac{256}{225}
Factor x^{2}-\frac{28}{15}x+\frac{196}{225}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{14}{15}\right)^{2}}=\sqrt{\frac{256}{225}}
Take the square root of both sides of the equation.
x-\frac{14}{15}=\frac{16}{15} x-\frac{14}{15}=-\frac{16}{15}
Simplify.
x=2 x=-\frac{2}{15}
Add \frac{14}{15} to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}