Solve for k
k\geq -\frac{35}{8}
Share
Copied to clipboard
2\left(3k-\frac{3}{2}\right)\geq -36\left(\frac{k}{2}+3\right)
Multiply both sides of the equation by 18, the least common multiple of 9,2. Since 18 is positive, the inequality direction remains the same.
6k+2\left(-\frac{3}{2}\right)\geq -36\left(\frac{k}{2}+3\right)
Use the distributive property to multiply 2 by 3k-\frac{3}{2}.
6k-3\geq -36\left(\frac{k}{2}+3\right)
Cancel out 2 and 2.
6k-3\geq -36\times \frac{k}{2}-108
Use the distributive property to multiply -36 by \frac{k}{2}+3.
6k-3\geq -18k-108
Cancel out 2, the greatest common factor in 36 and 2.
6k-3+18k\geq -108
Add 18k to both sides.
24k-3\geq -108
Combine 6k and 18k to get 24k.
24k\geq -108+3
Add 3 to both sides.
24k\geq -105
Add -108 and 3 to get -105.
k\geq \frac{-105}{24}
Divide both sides by 24. Since 24 is positive, the inequality direction remains the same.
k\geq -\frac{35}{8}
Reduce the fraction \frac{-105}{24} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}