Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

4\left(3x-6-5\left(\frac{7x}{2}-5\right)\right)+468\left(x-5\right)+9=0
Multiply both sides of the equation by 36, the least common multiple of 9,2,4.
4\left(3x-6-5\left(\frac{7x}{2}-5\right)\right)+468x-2340+9=0
Use the distributive property to multiply 468 by x-5.
4\left(3x-6-5\left(\frac{7x}{2}-5\right)\right)+468x-2331=0
Add -2340 and 9 to get -2331.
4\left(3x-6-5\left(\frac{7x}{2}-5\right)\right)+468x=2331
Add 2331 to both sides. Anything plus zero gives itself.
8\left(3x-6-5\left(\frac{7x}{2}-5\right)\right)+936x=4662
Multiply both sides of the equation by 2.
16\left(3x-6-5\left(\frac{7x}{2}-5\right)\right)+1872x=9324
Multiply both sides of the equation by 2.
16\left(3x-6-5\times \frac{7x}{2}+25\right)+1872x=9324
Use the distributive property to multiply -5 by \frac{7x}{2}-5.
16\left(3x-6+\frac{-5\times 7x}{2}+25\right)+1872x=9324
Express -5\times \frac{7x}{2} as a single fraction.
16\left(3x-6+\frac{-35x}{2}+25\right)+1872x=9324
Multiply -5 and 7 to get -35.
16\left(3x+19+\frac{-35x}{2}\right)+1872x=9324
Add -6 and 25 to get 19.
48x+304+16\times \frac{-35x}{2}+1872x=9324
Use the distributive property to multiply 16 by 3x+19+\frac{-35x}{2}.
48x+304+8\left(-35\right)x+1872x=9324
Cancel out 2, the greatest common factor in 16 and 2.
48x+304-280x+1872x=9324
Multiply 8 and -35 to get -280.
-232x+304+1872x=9324
Combine 48x and -280x to get -232x.
1640x+304=9324
Combine -232x and 1872x to get 1640x.
1640x=9324-304
Subtract 304 from both sides.
1640x=9020
Subtract 304 from 9324 to get 9020.
x=\frac{9020}{1640}
Divide both sides by 1640.
x=\frac{11}{2}
Reduce the fraction \frac{9020}{1640} to lowest terms by extracting and canceling out 820.