Evaluate
-2
Factor
-2
Share
Copied to clipboard
\frac{1}{9}\times \frac{11}{4}-\frac{1}{\frac{3}{2}}+\frac{4}{9}\left(-2\right)+\frac{\frac{4}{3}}{-1}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Divide \frac{1}{9} by \frac{4}{11} by multiplying \frac{1}{9} by the reciprocal of \frac{4}{11}.
\frac{1\times 11}{9\times 4}-\frac{1}{\frac{3}{2}}+\frac{4}{9}\left(-2\right)+\frac{\frac{4}{3}}{-1}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Multiply \frac{1}{9} times \frac{11}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{11}{36}-\frac{1}{\frac{3}{2}}+\frac{4}{9}\left(-2\right)+\frac{\frac{4}{3}}{-1}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Do the multiplications in the fraction \frac{1\times 11}{9\times 4}.
\frac{11}{36}-1\times \frac{2}{3}+\frac{4}{9}\left(-2\right)+\frac{\frac{4}{3}}{-1}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Divide 1 by \frac{3}{2} by multiplying 1 by the reciprocal of \frac{3}{2}.
\frac{11}{36}-\frac{2}{3}+\frac{4}{9}\left(-2\right)+\frac{\frac{4}{3}}{-1}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Multiply 1 and \frac{2}{3} to get \frac{2}{3}.
\frac{11}{36}-\frac{24}{36}+\frac{4}{9}\left(-2\right)+\frac{\frac{4}{3}}{-1}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Least common multiple of 36 and 3 is 36. Convert \frac{11}{36} and \frac{2}{3} to fractions with denominator 36.
\frac{11-24}{36}+\frac{4}{9}\left(-2\right)+\frac{\frac{4}{3}}{-1}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Since \frac{11}{36} and \frac{24}{36} have the same denominator, subtract them by subtracting their numerators.
-\frac{13}{36}+\frac{4}{9}\left(-2\right)+\frac{\frac{4}{3}}{-1}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Subtract 24 from 11 to get -13.
-\frac{13}{36}+\frac{4\left(-2\right)}{9}+\frac{\frac{4}{3}}{-1}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Express \frac{4}{9}\left(-2\right) as a single fraction.
-\frac{13}{36}+\frac{-8}{9}+\frac{\frac{4}{3}}{-1}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Multiply 4 and -2 to get -8.
-\frac{13}{36}-\frac{8}{9}+\frac{\frac{4}{3}}{-1}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Fraction \frac{-8}{9} can be rewritten as -\frac{8}{9} by extracting the negative sign.
-\frac{13}{36}-\frac{32}{36}+\frac{\frac{4}{3}}{-1}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Least common multiple of 36 and 9 is 36. Convert -\frac{13}{36} and \frac{8}{9} to fractions with denominator 36.
\frac{-13-32}{36}+\frac{\frac{4}{3}}{-1}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Since -\frac{13}{36} and \frac{32}{36} have the same denominator, subtract them by subtracting their numerators.
\frac{-45}{36}+\frac{\frac{4}{3}}{-1}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Subtract 32 from -13 to get -45.
-\frac{5}{4}+\frac{\frac{4}{3}}{-1}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Reduce the fraction \frac{-45}{36} to lowest terms by extracting and canceling out 9.
-\frac{5}{4}+\frac{4}{3\left(-1\right)}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Express \frac{\frac{4}{3}}{-1} as a single fraction.
-\frac{5}{4}+\frac{4}{-3}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Multiply 3 and -1 to get -3.
-\frac{5}{4}-\frac{4}{3}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Fraction \frac{4}{-3} can be rewritten as -\frac{4}{3} by extracting the negative sign.
-\frac{15}{12}-\frac{16}{12}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Least common multiple of 4 and 3 is 12. Convert -\frac{5}{4} and \frac{4}{3} to fractions with denominator 12.
\frac{-15-16}{12}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Since -\frac{15}{12} and \frac{16}{12} have the same denominator, subtract them by subtracting their numerators.
-\frac{31}{12}-\left(\frac{5}{18}-\frac{2}{3}\right)\times \frac{3}{2}
Subtract 16 from -15 to get -31.
-\frac{31}{12}-\left(\frac{5}{18}-\frac{12}{18}\right)\times \frac{3}{2}
Least common multiple of 18 and 3 is 18. Convert \frac{5}{18} and \frac{2}{3} to fractions with denominator 18.
-\frac{31}{12}-\frac{5-12}{18}\times \frac{3}{2}
Since \frac{5}{18} and \frac{12}{18} have the same denominator, subtract them by subtracting their numerators.
-\frac{31}{12}-\left(-\frac{7}{18}\times \frac{3}{2}\right)
Subtract 12 from 5 to get -7.
-\frac{31}{12}-\frac{-7\times 3}{18\times 2}
Multiply -\frac{7}{18} times \frac{3}{2} by multiplying numerator times numerator and denominator times denominator.
-\frac{31}{12}-\frac{-21}{36}
Do the multiplications in the fraction \frac{-7\times 3}{18\times 2}.
-\frac{31}{12}-\left(-\frac{7}{12}\right)
Reduce the fraction \frac{-21}{36} to lowest terms by extracting and canceling out 3.
-\frac{31}{12}+\frac{7}{12}
The opposite of -\frac{7}{12} is \frac{7}{12}.
\frac{-31+7}{12}
Since -\frac{31}{12} and \frac{7}{12} have the same denominator, add them by adding their numerators.
\frac{-24}{12}
Add -31 and 7 to get -24.
-2
Divide -24 by 12 to get -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}