Skip to main content
Factor
Tick mark Image
Evaluate
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1-81x^{4}}{81}
Factor out \frac{1}{81}.
\left(1-9x^{2}\right)\left(1+9x^{2}\right)
Consider 1-81x^{4}. Rewrite 1-81x^{4} as 1^{2}-\left(9x^{2}\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(-9x^{2}+1\right)\left(9x^{2}+1\right)
Reorder the terms.
\left(1-3x\right)\left(1+3x\right)
Consider -9x^{2}+1. Rewrite -9x^{2}+1 as 1^{2}-\left(3x\right)^{2}. The difference of squares can be factored using the rule: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
\left(-3x+1\right)\left(3x+1\right)
Reorder the terms.
\frac{\left(-3x+1\right)\left(3x+1\right)\left(9x^{2}+1\right)}{81}
Rewrite the complete factored expression. Polynomial 9x^{2}+1 is not factored since it does not have any rational roots.