Evaluate
\frac{x+1}{\left(x-1\right)\left(x+3\right)^{2}}
Expand
\frac{x+1}{\left(x-1\right)\left(x+3\right)^{2}}
Graph
Share
Copied to clipboard
\frac{x+3}{8\left(x-1\right)\left(x+3\right)}-\frac{x-1}{8\left(x-1\right)\left(x+3\right)}+\frac{1}{2\left(x+3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 8\left(x-1\right) and 8\left(x+3\right) is 8\left(x-1\right)\left(x+3\right). Multiply \frac{1}{8\left(x-1\right)} times \frac{x+3}{x+3}. Multiply \frac{1}{8\left(x+3\right)} times \frac{x-1}{x-1}.
\frac{x+3-\left(x-1\right)}{8\left(x-1\right)\left(x+3\right)}+\frac{1}{2\left(x+3\right)^{2}}
Since \frac{x+3}{8\left(x-1\right)\left(x+3\right)} and \frac{x-1}{8\left(x-1\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x+3-x+1}{8\left(x-1\right)\left(x+3\right)}+\frac{1}{2\left(x+3\right)^{2}}
Do the multiplications in x+3-\left(x-1\right).
\frac{4}{8\left(x-1\right)\left(x+3\right)}+\frac{1}{2\left(x+3\right)^{2}}
Combine like terms in x+3-x+1.
\frac{4\left(x+3\right)}{8\left(x-1\right)\left(x+3\right)^{2}}+\frac{4\left(x-1\right)}{8\left(x-1\right)\left(x+3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 8\left(x-1\right)\left(x+3\right) and 2\left(x+3\right)^{2} is 8\left(x-1\right)\left(x+3\right)^{2}. Multiply \frac{4}{8\left(x-1\right)\left(x+3\right)} times \frac{x+3}{x+3}. Multiply \frac{1}{2\left(x+3\right)^{2}} times \frac{4\left(x-1\right)}{4\left(x-1\right)}.
\frac{4\left(x+3\right)+4\left(x-1\right)}{8\left(x-1\right)\left(x+3\right)^{2}}
Since \frac{4\left(x+3\right)}{8\left(x-1\right)\left(x+3\right)^{2}} and \frac{4\left(x-1\right)}{8\left(x-1\right)\left(x+3\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{4x+12+4x-4}{8\left(x-1\right)\left(x+3\right)^{2}}
Do the multiplications in 4\left(x+3\right)+4\left(x-1\right).
\frac{8x+8}{8\left(x-1\right)\left(x+3\right)^{2}}
Combine like terms in 4x+12+4x-4.
\frac{8\left(x+1\right)}{8\left(x-1\right)\left(x+3\right)^{2}}
Factor the expressions that are not already factored in \frac{8x+8}{8\left(x-1\right)\left(x+3\right)^{2}}.
\frac{x+1}{\left(x-1\right)\left(x+3\right)^{2}}
Cancel out 8 in both numerator and denominator.
\frac{x+1}{x^{3}+5x^{2}+3x-9}
Expand \left(x-1\right)\left(x+3\right)^{2}.
\frac{x+3}{8\left(x-1\right)\left(x+3\right)}-\frac{x-1}{8\left(x-1\right)\left(x+3\right)}+\frac{1}{2\left(x+3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 8\left(x-1\right) and 8\left(x+3\right) is 8\left(x-1\right)\left(x+3\right). Multiply \frac{1}{8\left(x-1\right)} times \frac{x+3}{x+3}. Multiply \frac{1}{8\left(x+3\right)} times \frac{x-1}{x-1}.
\frac{x+3-\left(x-1\right)}{8\left(x-1\right)\left(x+3\right)}+\frac{1}{2\left(x+3\right)^{2}}
Since \frac{x+3}{8\left(x-1\right)\left(x+3\right)} and \frac{x-1}{8\left(x-1\right)\left(x+3\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{x+3-x+1}{8\left(x-1\right)\left(x+3\right)}+\frac{1}{2\left(x+3\right)^{2}}
Do the multiplications in x+3-\left(x-1\right).
\frac{4}{8\left(x-1\right)\left(x+3\right)}+\frac{1}{2\left(x+3\right)^{2}}
Combine like terms in x+3-x+1.
\frac{4\left(x+3\right)}{8\left(x-1\right)\left(x+3\right)^{2}}+\frac{4\left(x-1\right)}{8\left(x-1\right)\left(x+3\right)^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 8\left(x-1\right)\left(x+3\right) and 2\left(x+3\right)^{2} is 8\left(x-1\right)\left(x+3\right)^{2}. Multiply \frac{4}{8\left(x-1\right)\left(x+3\right)} times \frac{x+3}{x+3}. Multiply \frac{1}{2\left(x+3\right)^{2}} times \frac{4\left(x-1\right)}{4\left(x-1\right)}.
\frac{4\left(x+3\right)+4\left(x-1\right)}{8\left(x-1\right)\left(x+3\right)^{2}}
Since \frac{4\left(x+3\right)}{8\left(x-1\right)\left(x+3\right)^{2}} and \frac{4\left(x-1\right)}{8\left(x-1\right)\left(x+3\right)^{2}} have the same denominator, add them by adding their numerators.
\frac{4x+12+4x-4}{8\left(x-1\right)\left(x+3\right)^{2}}
Do the multiplications in 4\left(x+3\right)+4\left(x-1\right).
\frac{8x+8}{8\left(x-1\right)\left(x+3\right)^{2}}
Combine like terms in 4x+12+4x-4.
\frac{8\left(x+1\right)}{8\left(x-1\right)\left(x+3\right)^{2}}
Factor the expressions that are not already factored in \frac{8x+8}{8\left(x-1\right)\left(x+3\right)^{2}}.
\frac{x+1}{\left(x-1\right)\left(x+3\right)^{2}}
Cancel out 8 in both numerator and denominator.
\frac{x+1}{x^{3}+5x^{2}+3x-9}
Expand \left(x-1\right)\left(x+3\right)^{2}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}