Solve for w
w\geq \frac{2}{39}
Share
Copied to clipboard
\frac{1}{8}w-2-5w\leq -\frac{9}{4}
Subtract 5w from both sides.
-\frac{39}{8}w-2\leq -\frac{9}{4}
Combine \frac{1}{8}w and -5w to get -\frac{39}{8}w.
-\frac{39}{8}w\leq -\frac{9}{4}+2
Add 2 to both sides.
-\frac{39}{8}w\leq -\frac{9}{4}+\frac{8}{4}
Convert 2 to fraction \frac{8}{4}.
-\frac{39}{8}w\leq \frac{-9+8}{4}
Since -\frac{9}{4} and \frac{8}{4} have the same denominator, add them by adding their numerators.
-\frac{39}{8}w\leq -\frac{1}{4}
Add -9 and 8 to get -1.
w\geq -\frac{1}{4}\left(-\frac{8}{39}\right)
Multiply both sides by -\frac{8}{39}, the reciprocal of -\frac{39}{8}. Since -\frac{39}{8} is negative, the inequality direction is changed.
w\geq \frac{-\left(-8\right)}{4\times 39}
Multiply -\frac{1}{4} times -\frac{8}{39} by multiplying numerator times numerator and denominator times denominator.
w\geq \frac{8}{156}
Do the multiplications in the fraction \frac{-\left(-8\right)}{4\times 39}.
w\geq \frac{2}{39}
Reduce the fraction \frac{8}{156} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}