Solve for x
x=600y_{0}+5
Solve for y_0
y_{0}=\frac{x-5}{600}
Graph
Share
Copied to clipboard
\frac{1}{8}x-\frac{5}{8}=75y_{0}
Use the distributive property to multiply \frac{1}{8} by x-5.
\frac{1}{8}x=75y_{0}+\frac{5}{8}
Add \frac{5}{8} to both sides.
\frac{\frac{1}{8}x}{\frac{1}{8}}=\frac{75y_{0}+\frac{5}{8}}{\frac{1}{8}}
Multiply both sides by 8.
x=\frac{75y_{0}+\frac{5}{8}}{\frac{1}{8}}
Dividing by \frac{1}{8} undoes the multiplication by \frac{1}{8}.
x=600y_{0}+5
Divide 75y_{0}+\frac{5}{8} by \frac{1}{8} by multiplying 75y_{0}+\frac{5}{8} by the reciprocal of \frac{1}{8}.
\frac{1}{8}x-\frac{5}{8}=75y_{0}
Use the distributive property to multiply \frac{1}{8} by x-5.
75y_{0}=\frac{1}{8}x-\frac{5}{8}
Swap sides so that all variable terms are on the left hand side.
75y_{0}=\frac{x-5}{8}
The equation is in standard form.
\frac{75y_{0}}{75}=\frac{x-5}{8\times 75}
Divide both sides by 75.
y_{0}=\frac{x-5}{8\times 75}
Dividing by 75 undoes the multiplication by 75.
y_{0}=\frac{x}{600}-\frac{1}{120}
Divide \frac{-5+x}{8} by 75.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}