\frac { 1 } { 8 } ( x + 0.5 ) = 75 \%
Solve for x
x=5.5
Graph
Share
Copied to clipboard
\frac{1}{8}x+\frac{1}{8}\times 0.5=\frac{75}{100}
Use the distributive property to multiply \frac{1}{8} by x+0.5.
\frac{1}{8}x+\frac{1}{8}\times \frac{1}{2}=\frac{75}{100}
Convert decimal number 0.5 to fraction \frac{5}{10}. Reduce the fraction \frac{5}{10} to lowest terms by extracting and canceling out 5.
\frac{1}{8}x+\frac{1\times 1}{8\times 2}=\frac{75}{100}
Multiply \frac{1}{8} times \frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{8}x+\frac{1}{16}=\frac{75}{100}
Do the multiplications in the fraction \frac{1\times 1}{8\times 2}.
\frac{1}{8}x+\frac{1}{16}=\frac{3}{4}
Reduce the fraction \frac{75}{100} to lowest terms by extracting and canceling out 25.
\frac{1}{8}x=\frac{3}{4}-\frac{1}{16}
Subtract \frac{1}{16} from both sides.
\frac{1}{8}x=\frac{12}{16}-\frac{1}{16}
Least common multiple of 4 and 16 is 16. Convert \frac{3}{4} and \frac{1}{16} to fractions with denominator 16.
\frac{1}{8}x=\frac{12-1}{16}
Since \frac{12}{16} and \frac{1}{16} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{8}x=\frac{11}{16}
Subtract 1 from 12 to get 11.
x=\frac{11}{16}\times 8
Multiply both sides by 8, the reciprocal of \frac{1}{8}.
x=\frac{11\times 8}{16}
Express \frac{11}{16}\times 8 as a single fraction.
x=\frac{88}{16}
Multiply 11 and 8 to get 88.
x=\frac{11}{2}
Reduce the fraction \frac{88}{16} to lowest terms by extracting and canceling out 8.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}