Evaluate
\frac{3979}{680}\approx 5.851470588
Factor
\frac{23 \cdot 173}{2 ^ {3} \cdot 5 \cdot 17} = 5\frac{579}{680} = 5.851470588235294
Share
Copied to clipboard
\frac{1}{8}\left(\frac{160}{17}+\frac{32}{5}+31\right)
Reduce the fraction \frac{160}{25} to lowest terms by extracting and canceling out 5.
\frac{1}{8}\left(\frac{800}{85}+\frac{544}{85}+31\right)
Least common multiple of 17 and 5 is 85. Convert \frac{160}{17} and \frac{32}{5} to fractions with denominator 85.
\frac{1}{8}\left(\frac{800+544}{85}+31\right)
Since \frac{800}{85} and \frac{544}{85} have the same denominator, add them by adding their numerators.
\frac{1}{8}\left(\frac{1344}{85}+31\right)
Add 800 and 544 to get 1344.
\frac{1}{8}\left(\frac{1344}{85}+\frac{2635}{85}\right)
Convert 31 to fraction \frac{2635}{85}.
\frac{1}{8}\times \frac{1344+2635}{85}
Since \frac{1344}{85} and \frac{2635}{85} have the same denominator, add them by adding their numerators.
\frac{1}{8}\times \frac{3979}{85}
Add 1344 and 2635 to get 3979.
\frac{1\times 3979}{8\times 85}
Multiply \frac{1}{8} times \frac{3979}{85} by multiplying numerator times numerator and denominator times denominator.
\frac{3979}{680}
Do the multiplications in the fraction \frac{1\times 3979}{8\times 85}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}