Solve for u
u=-\frac{8v}{8-v}
v\neq 0\text{ and }v\neq 8
Solve for v
v=-\frac{8u}{8-u}
u\neq 0\text{ and }u\neq 8
Share
Copied to clipboard
uv=8v+8u
Variable u cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 8uv, the least common multiple of 8,u,v.
uv-8u=8v
Subtract 8u from both sides.
\left(v-8\right)u=8v
Combine all terms containing u.
\frac{\left(v-8\right)u}{v-8}=\frac{8v}{v-8}
Divide both sides by v-8.
u=\frac{8v}{v-8}
Dividing by v-8 undoes the multiplication by v-8.
u=\frac{8v}{v-8}\text{, }u\neq 0
Variable u cannot be equal to 0.
uv=8v+8u
Variable v cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 8uv, the least common multiple of 8,u,v.
uv-8v=8u
Subtract 8v from both sides.
\left(u-8\right)v=8u
Combine all terms containing v.
\frac{\left(u-8\right)v}{u-8}=\frac{8u}{u-8}
Divide both sides by u-8.
v=\frac{8u}{u-8}
Dividing by u-8 undoes the multiplication by u-8.
v=\frac{8u}{u-8}\text{, }v\neq 0
Variable v cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}