Evaluate
\frac{2567}{360}\approx 7.130555556
Factor
\frac{17 \cdot 151}{2 ^ {3} \cdot 3 ^ {2} \cdot 5} = 7\frac{47}{360} = 7.1305555555555555
Share
Copied to clipboard
\frac{1}{8}+\frac{32}{8}-\left(\frac{4}{3}\times \frac{2}{6}-\frac{1}{4}\right)+\frac{\frac{8}{5}}{\frac{1}{2}}
Convert 4 to fraction \frac{32}{8}.
\frac{1+32}{8}-\left(\frac{4}{3}\times \frac{2}{6}-\frac{1}{4}\right)+\frac{\frac{8}{5}}{\frac{1}{2}}
Since \frac{1}{8} and \frac{32}{8} have the same denominator, add them by adding their numerators.
\frac{33}{8}-\left(\frac{4}{3}\times \frac{2}{6}-\frac{1}{4}\right)+\frac{\frac{8}{5}}{\frac{1}{2}}
Add 1 and 32 to get 33.
\frac{33}{8}-\left(\frac{4}{3}\times \frac{1}{3}-\frac{1}{4}\right)+\frac{\frac{8}{5}}{\frac{1}{2}}
Reduce the fraction \frac{2}{6} to lowest terms by extracting and canceling out 2.
\frac{33}{8}-\left(\frac{4\times 1}{3\times 3}-\frac{1}{4}\right)+\frac{\frac{8}{5}}{\frac{1}{2}}
Multiply \frac{4}{3} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{33}{8}-\left(\frac{4}{9}-\frac{1}{4}\right)+\frac{\frac{8}{5}}{\frac{1}{2}}
Do the multiplications in the fraction \frac{4\times 1}{3\times 3}.
\frac{33}{8}-\left(\frac{16}{36}-\frac{9}{36}\right)+\frac{\frac{8}{5}}{\frac{1}{2}}
Least common multiple of 9 and 4 is 36. Convert \frac{4}{9} and \frac{1}{4} to fractions with denominator 36.
\frac{33}{8}-\frac{16-9}{36}+\frac{\frac{8}{5}}{\frac{1}{2}}
Since \frac{16}{36} and \frac{9}{36} have the same denominator, subtract them by subtracting their numerators.
\frac{33}{8}-\frac{7}{36}+\frac{\frac{8}{5}}{\frac{1}{2}}
Subtract 9 from 16 to get 7.
\frac{297}{72}-\frac{14}{72}+\frac{\frac{8}{5}}{\frac{1}{2}}
Least common multiple of 8 and 36 is 72. Convert \frac{33}{8} and \frac{7}{36} to fractions with denominator 72.
\frac{297-14}{72}+\frac{\frac{8}{5}}{\frac{1}{2}}
Since \frac{297}{72} and \frac{14}{72} have the same denominator, subtract them by subtracting their numerators.
\frac{283}{72}+\frac{\frac{8}{5}}{\frac{1}{2}}
Subtract 14 from 297 to get 283.
\frac{283}{72}+\frac{8}{5}\times 2
Divide \frac{8}{5} by \frac{1}{2} by multiplying \frac{8}{5} by the reciprocal of \frac{1}{2}.
\frac{283}{72}+\frac{8\times 2}{5}
Express \frac{8}{5}\times 2 as a single fraction.
\frac{283}{72}+\frac{16}{5}
Multiply 8 and 2 to get 16.
\frac{1415}{360}+\frac{1152}{360}
Least common multiple of 72 and 5 is 360. Convert \frac{283}{72} and \frac{16}{5} to fractions with denominator 360.
\frac{1415+1152}{360}
Since \frac{1415}{360} and \frac{1152}{360} have the same denominator, add them by adding their numerators.
\frac{2567}{360}
Add 1415 and 1152 to get 2567.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}