Evaluate
\frac{269}{40}=6.725
Factor
\frac{269}{2 ^ {3} \cdot 5} = 6\frac{29}{40} = 6.725
Quiz
Arithmetic
\frac { 1 } { 8 } + ( \frac { 9 } { 5 } - \frac { 3 } { 20 } ) \div \frac { 1 } { 4 }
Share
Copied to clipboard
\frac{1}{8}+\frac{\frac{36}{20}-\frac{3}{20}}{\frac{1}{4}}
Least common multiple of 5 and 20 is 20. Convert \frac{9}{5} and \frac{3}{20} to fractions with denominator 20.
\frac{1}{8}+\frac{\frac{36-3}{20}}{\frac{1}{4}}
Since \frac{36}{20} and \frac{3}{20} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{8}+\frac{\frac{33}{20}}{\frac{1}{4}}
Subtract 3 from 36 to get 33.
\frac{1}{8}+\frac{33}{20}\times 4
Divide \frac{33}{20} by \frac{1}{4} by multiplying \frac{33}{20} by the reciprocal of \frac{1}{4}.
\frac{1}{8}+\frac{33\times 4}{20}
Express \frac{33}{20}\times 4 as a single fraction.
\frac{1}{8}+\frac{132}{20}
Multiply 33 and 4 to get 132.
\frac{1}{8}+\frac{33}{5}
Reduce the fraction \frac{132}{20} to lowest terms by extracting and canceling out 4.
\frac{5}{40}+\frac{264}{40}
Least common multiple of 8 and 5 is 40. Convert \frac{1}{8} and \frac{33}{5} to fractions with denominator 40.
\frac{5+264}{40}
Since \frac{5}{40} and \frac{264}{40} have the same denominator, add them by adding their numerators.
\frac{269}{40}
Add 5 and 264 to get 269.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}