Solve for x
x=\frac{1}{2}=0.5
x=-\frac{71}{98}\approx -0.724489796
Graph
Share
Copied to clipboard
-\frac{4\sqrt{3}}{7}\sqrt{1-x^{2}}=-\frac{11}{14}-\frac{1}{7}x
Subtract \frac{1}{7}x from both sides of the equation.
-14\times \frac{4\sqrt{3}}{7}\sqrt{1-x^{2}}=-11-2x
Multiply both sides of the equation by 14, the least common multiple of 7,14.
-2\times 4\sqrt{3}\sqrt{1-x^{2}}=-11-2x
Cancel out 7, the greatest common factor in 14 and 7.
-8\sqrt{3}\sqrt{1-x^{2}}=-11-2x
Multiply -2 and 4 to get -8.
\left(-8\sqrt{3}\sqrt{1-x^{2}}\right)^{2}=\left(-11-2x\right)^{2}
Square both sides of the equation.
\left(-8\right)^{2}\left(\sqrt{3}\right)^{2}\left(\sqrt{1-x^{2}}\right)^{2}=\left(-11-2x\right)^{2}
Expand \left(-8\sqrt{3}\sqrt{1-x^{2}}\right)^{2}.
64\left(\sqrt{3}\right)^{2}\left(\sqrt{1-x^{2}}\right)^{2}=\left(-11-2x\right)^{2}
Calculate -8 to the power of 2 and get 64.
64\times 3\left(\sqrt{1-x^{2}}\right)^{2}=\left(-11-2x\right)^{2}
The square of \sqrt{3} is 3.
192\left(\sqrt{1-x^{2}}\right)^{2}=\left(-11-2x\right)^{2}
Multiply 64 and 3 to get 192.
192\left(1-x^{2}\right)=\left(-11-2x\right)^{2}
Calculate \sqrt{1-x^{2}} to the power of 2 and get 1-x^{2}.
192-192x^{2}=\left(-11-2x\right)^{2}
Use the distributive property to multiply 192 by 1-x^{2}.
192-192x^{2}=121+44x+4x^{2}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-11-2x\right)^{2}.
192-192x^{2}-121=44x+4x^{2}
Subtract 121 from both sides.
71-192x^{2}=44x+4x^{2}
Subtract 121 from 192 to get 71.
71-192x^{2}-44x=4x^{2}
Subtract 44x from both sides.
71-192x^{2}-44x-4x^{2}=0
Subtract 4x^{2} from both sides.
71-196x^{2}-44x=0
Combine -192x^{2} and -4x^{2} to get -196x^{2}.
-196x^{2}-44x+71=0
Rearrange the polynomial to put it in standard form. Place the terms in order from highest to lowest power.
a+b=-44 ab=-196\times 71=-13916
To solve the equation, factor the left hand side by grouping. First, left hand side needs to be rewritten as -196x^{2}+ax+bx+71. To find a and b, set up a system to be solved.
1,-13916 2,-6958 4,-3479 7,-1988 14,-994 28,-497 49,-284 71,-196 98,-142
Since ab is negative, a and b have the opposite signs. Since a+b is negative, the negative number has greater absolute value than the positive. List all such integer pairs that give product -13916.
1-13916=-13915 2-6958=-6956 4-3479=-3475 7-1988=-1981 14-994=-980 28-497=-469 49-284=-235 71-196=-125 98-142=-44
Calculate the sum for each pair.
a=98 b=-142
The solution is the pair that gives sum -44.
\left(-196x^{2}+98x\right)+\left(-142x+71\right)
Rewrite -196x^{2}-44x+71 as \left(-196x^{2}+98x\right)+\left(-142x+71\right).
-98x\left(2x-1\right)-71\left(2x-1\right)
Factor out -98x in the first and -71 in the second group.
\left(2x-1\right)\left(-98x-71\right)
Factor out common term 2x-1 by using distributive property.
x=\frac{1}{2} x=-\frac{71}{98}
To find equation solutions, solve 2x-1=0 and -98x-71=0.
\frac{1}{7}\times \frac{1}{2}-\frac{4\sqrt{3}}{7}\sqrt{1-\left(\frac{1}{2}\right)^{2}}=-\frac{11}{14}
Substitute \frac{1}{2} for x in the equation \frac{1}{7}x-\frac{4\sqrt{3}}{7}\sqrt{1-x^{2}}=-\frac{11}{14}.
-\frac{11}{14}=-\frac{11}{14}
Simplify. The value x=\frac{1}{2} satisfies the equation.
\frac{1}{7}\left(-\frac{71}{98}\right)-\frac{4\sqrt{3}}{7}\sqrt{1-\left(-\frac{71}{98}\right)^{2}}=-\frac{11}{14}
Substitute -\frac{71}{98} for x in the equation \frac{1}{7}x-\frac{4\sqrt{3}}{7}\sqrt{1-x^{2}}=-\frac{11}{14}.
-\frac{11}{14}=-\frac{11}{14}
Simplify. The value x=-\frac{71}{98} satisfies the equation.
x=\frac{1}{2} x=-\frac{71}{98}
List all solutions of -8\sqrt{3}\sqrt{1-x^{2}}=-2x-11.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}