Solve for x
x=\frac{7}{8}=0.875
Graph
Share
Copied to clipboard
\frac{1}{7}\times 2x+\frac{1}{7}\times 14=4-2x
Use the distributive property to multiply \frac{1}{7} by 2x+14.
\frac{2}{7}x+\frac{1}{7}\times 14=4-2x
Multiply \frac{1}{7} and 2 to get \frac{2}{7}.
\frac{2}{7}x+\frac{14}{7}=4-2x
Multiply \frac{1}{7} and 14 to get \frac{14}{7}.
\frac{2}{7}x+2=4-2x
Divide 14 by 7 to get 2.
\frac{2}{7}x+2+2x=4
Add 2x to both sides.
\frac{16}{7}x+2=4
Combine \frac{2}{7}x and 2x to get \frac{16}{7}x.
\frac{16}{7}x=4-2
Subtract 2 from both sides.
\frac{16}{7}x=2
Subtract 2 from 4 to get 2.
x=2\times \frac{7}{16}
Multiply both sides by \frac{7}{16}, the reciprocal of \frac{16}{7}.
x=\frac{2\times 7}{16}
Express 2\times \frac{7}{16} as a single fraction.
x=\frac{14}{16}
Multiply 2 and 7 to get 14.
x=\frac{7}{8}
Reduce the fraction \frac{14}{16} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}