Verify
false
Share
Copied to clipboard
\frac{1}{7\times 2}=\frac{\frac{1}{14}\times \frac{1}{3}}{5}\text{ and }\frac{\frac{1}{14}\times \frac{1}{3}}{5}=\frac{1}{15}
Express \frac{\frac{1}{7}}{2} as a single fraction.
\frac{1}{14}=\frac{\frac{1}{14}\times \frac{1}{3}}{5}\text{ and }\frac{\frac{1}{14}\times \frac{1}{3}}{5}=\frac{1}{15}
Multiply 7 and 2 to get 14.
\frac{1}{14}=\frac{\frac{1\times 1}{14\times 3}}{5}\text{ and }\frac{\frac{1}{14}\times \frac{1}{3}}{5}=\frac{1}{15}
Multiply \frac{1}{14} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{14}=\frac{\frac{1}{42}}{5}\text{ and }\frac{\frac{1}{14}\times \frac{1}{3}}{5}=\frac{1}{15}
Do the multiplications in the fraction \frac{1\times 1}{14\times 3}.
\frac{1}{14}=\frac{1}{42\times 5}\text{ and }\frac{\frac{1}{14}\times \frac{1}{3}}{5}=\frac{1}{15}
Express \frac{\frac{1}{42}}{5} as a single fraction.
\frac{1}{14}=\frac{1}{210}\text{ and }\frac{\frac{1}{14}\times \frac{1}{3}}{5}=\frac{1}{15}
Multiply 42 and 5 to get 210.
\frac{15}{210}=\frac{1}{210}\text{ and }\frac{\frac{1}{14}\times \frac{1}{3}}{5}=\frac{1}{15}
Least common multiple of 14 and 210 is 210. Convert \frac{1}{14} and \frac{1}{210} to fractions with denominator 210.
\text{false}\text{ and }\frac{\frac{1}{14}\times \frac{1}{3}}{5}=\frac{1}{15}
Compare \frac{15}{210} and \frac{1}{210}.
\text{false}\text{ and }\frac{\frac{1\times 1}{14\times 3}}{5}=\frac{1}{15}
Multiply \frac{1}{14} times \frac{1}{3} by multiplying numerator times numerator and denominator times denominator.
\text{false}\text{ and }\frac{\frac{1}{42}}{5}=\frac{1}{15}
Do the multiplications in the fraction \frac{1\times 1}{14\times 3}.
\text{false}\text{ and }\frac{1}{42\times 5}=\frac{1}{15}
Express \frac{\frac{1}{42}}{5} as a single fraction.
\text{false}\text{ and }\frac{1}{210}=\frac{1}{15}
Multiply 42 and 5 to get 210.
\text{false}\text{ and }\frac{1}{210}=\frac{14}{210}
Least common multiple of 210 and 15 is 210. Convert \frac{1}{210} and \frac{1}{15} to fractions with denominator 210.
\text{false}\text{ and }\text{false}
Compare \frac{1}{210} and \frac{14}{210}.
\text{false}
The conjunction of \text{false} and \text{false} is \text{false}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}