Evaluate
-\frac{64}{7}\approx -9.142857143
Factor
-\frac{64}{7} = -9\frac{1}{7} = -9.142857142857142
Share
Copied to clipboard
\frac{1}{7}\times 4\left(-2\right)\times \frac{16^{3}}{8^{3}}
Calculate 2 to the power of 2 and get 4.
\frac{4}{7}\left(-2\right)\times \frac{16^{3}}{8^{3}}
Multiply \frac{1}{7} and 4 to get \frac{4}{7}.
\frac{4\left(-2\right)}{7}\times \frac{16^{3}}{8^{3}}
Express \frac{4}{7}\left(-2\right) as a single fraction.
\frac{-8}{7}\times \frac{16^{3}}{8^{3}}
Multiply 4 and -2 to get -8.
-\frac{8}{7}\times \frac{16^{3}}{8^{3}}
Fraction \frac{-8}{7} can be rewritten as -\frac{8}{7} by extracting the negative sign.
-\frac{8}{7}\times \frac{4096}{8^{3}}
Calculate 16 to the power of 3 and get 4096.
-\frac{8}{7}\times \frac{4096}{512}
Calculate 8 to the power of 3 and get 512.
-\frac{8}{7}\times 8
Divide 4096 by 512 to get 8.
\frac{-8\times 8}{7}
Express -\frac{8}{7}\times 8 as a single fraction.
\frac{-64}{7}
Multiply -8 and 8 to get -64.
-\frac{64}{7}
Fraction \frac{-64}{7} can be rewritten as -\frac{64}{7} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}