Solve for h
h=-\frac{2x}{5\left(24-x\right)}
x\neq 0\text{ and }x\neq 24
Solve for x
x=-\frac{120h}{2-5h}
h\neq 0\text{ and }h\neq \frac{2}{5}
Graph
Quiz
Linear Equation
5 problems similar to:
\frac { 1 } { 60 h } + \frac { 1 } { x } = \frac { 1 } { 24 }
Share
Copied to clipboard
2x+120h=5hx
Variable h cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 120hx, the least common multiple of 60h,x,24.
2x+120h-5hx=0
Subtract 5hx from both sides.
120h-5hx=-2x
Subtract 2x from both sides. Anything subtracted from zero gives its negation.
\left(120-5x\right)h=-2x
Combine all terms containing h.
\frac{\left(120-5x\right)h}{120-5x}=-\frac{2x}{120-5x}
Divide both sides by -5x+120.
h=-\frac{2x}{120-5x}
Dividing by -5x+120 undoes the multiplication by -5x+120.
h=-\frac{2x}{5\left(24-x\right)}
Divide -2x by -5x+120.
h=-\frac{2x}{5\left(24-x\right)}\text{, }h\neq 0
Variable h cannot be equal to 0.
2x+120h=5hx
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 120hx, the least common multiple of 60h,x,24.
2x+120h-5hx=0
Subtract 5hx from both sides.
2x-5hx=-120h
Subtract 120h from both sides. Anything subtracted from zero gives its negation.
\left(2-5h\right)x=-120h
Combine all terms containing x.
\frac{\left(2-5h\right)x}{2-5h}=-\frac{120h}{2-5h}
Divide both sides by 2-5h.
x=-\frac{120h}{2-5h}
Dividing by 2-5h undoes the multiplication by 2-5h.
x=-\frac{120h}{2-5h}\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}