Skip to main content
Evaluate
Tick mark Image
Factor
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{2\left(3a-2b\right)}-\frac{1}{2\left(3a+2b\right)}-\frac{3a}{4b^{2}-9a^{2}}
Factor 6a-4b. Factor 6a+4b.
\frac{3a+2b}{2\left(3a-2b\right)\left(3a+2b\right)}-\frac{3a-2b}{2\left(3a-2b\right)\left(3a+2b\right)}-\frac{3a}{4b^{2}-9a^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(3a-2b\right) and 2\left(3a+2b\right) is 2\left(3a-2b\right)\left(3a+2b\right). Multiply \frac{1}{2\left(3a-2b\right)} times \frac{3a+2b}{3a+2b}. Multiply \frac{1}{2\left(3a+2b\right)} times \frac{3a-2b}{3a-2b}.
\frac{3a+2b-\left(3a-2b\right)}{2\left(3a-2b\right)\left(3a+2b\right)}-\frac{3a}{4b^{2}-9a^{2}}
Since \frac{3a+2b}{2\left(3a-2b\right)\left(3a+2b\right)} and \frac{3a-2b}{2\left(3a-2b\right)\left(3a+2b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3a+2b-3a+2b}{2\left(3a-2b\right)\left(3a+2b\right)}-\frac{3a}{4b^{2}-9a^{2}}
Do the multiplications in 3a+2b-\left(3a-2b\right).
\frac{4b}{2\left(3a-2b\right)\left(3a+2b\right)}-\frac{3a}{4b^{2}-9a^{2}}
Combine like terms in 3a+2b-3a+2b.
\frac{2b}{\left(3a-2b\right)\left(3a+2b\right)}-\frac{3a}{4b^{2}-9a^{2}}
Cancel out 2 in both numerator and denominator.
\frac{2b}{\left(3a-2b\right)\left(3a+2b\right)}-\frac{3a}{\left(-3a+2b\right)\left(3a+2b\right)}
Factor 4b^{2}-9a^{2}.
\frac{-2b}{\left(-3a+2b\right)\left(3a+2b\right)}-\frac{3a}{\left(-3a+2b\right)\left(3a+2b\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(3a-2b\right)\left(3a+2b\right) and \left(-3a+2b\right)\left(3a+2b\right) is \left(-3a+2b\right)\left(3a+2b\right). Multiply \frac{2b}{\left(3a-2b\right)\left(3a+2b\right)} times \frac{-1}{-1}.
\frac{-2b-3a}{\left(-3a+2b\right)\left(3a+2b\right)}
Since \frac{-2b}{\left(-3a+2b\right)\left(3a+2b\right)} and \frac{3a}{\left(-3a+2b\right)\left(3a+2b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-\left(3a+2b\right)}{\left(-3a+2b\right)\left(3a+2b\right)}
Extract the negative sign in -2b-3a.
\frac{-1}{-3a+2b}
Cancel out 3a+2b in both numerator and denominator.