Evaluate
\frac{1}{3a-2b}
Factor
\frac{1}{3a-2b}
Share
Copied to clipboard
\frac{1}{2\left(3a-2b\right)}-\frac{1}{2\left(3a+2b\right)}-\frac{3a}{4b^{2}-9a^{2}}
Factor 6a-4b. Factor 6a+4b.
\frac{3a+2b}{2\left(3a-2b\right)\left(3a+2b\right)}-\frac{3a-2b}{2\left(3a-2b\right)\left(3a+2b\right)}-\frac{3a}{4b^{2}-9a^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2\left(3a-2b\right) and 2\left(3a+2b\right) is 2\left(3a-2b\right)\left(3a+2b\right). Multiply \frac{1}{2\left(3a-2b\right)} times \frac{3a+2b}{3a+2b}. Multiply \frac{1}{2\left(3a+2b\right)} times \frac{3a-2b}{3a-2b}.
\frac{3a+2b-\left(3a-2b\right)}{2\left(3a-2b\right)\left(3a+2b\right)}-\frac{3a}{4b^{2}-9a^{2}}
Since \frac{3a+2b}{2\left(3a-2b\right)\left(3a+2b\right)} and \frac{3a-2b}{2\left(3a-2b\right)\left(3a+2b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{3a+2b-3a+2b}{2\left(3a-2b\right)\left(3a+2b\right)}-\frac{3a}{4b^{2}-9a^{2}}
Do the multiplications in 3a+2b-\left(3a-2b\right).
\frac{4b}{2\left(3a-2b\right)\left(3a+2b\right)}-\frac{3a}{4b^{2}-9a^{2}}
Combine like terms in 3a+2b-3a+2b.
\frac{2b}{\left(3a-2b\right)\left(3a+2b\right)}-\frac{3a}{4b^{2}-9a^{2}}
Cancel out 2 in both numerator and denominator.
\frac{2b}{\left(3a-2b\right)\left(3a+2b\right)}-\frac{3a}{\left(-3a+2b\right)\left(3a+2b\right)}
Factor 4b^{2}-9a^{2}.
\frac{-2b}{\left(-3a+2b\right)\left(3a+2b\right)}-\frac{3a}{\left(-3a+2b\right)\left(3a+2b\right)}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of \left(3a-2b\right)\left(3a+2b\right) and \left(-3a+2b\right)\left(3a+2b\right) is \left(-3a+2b\right)\left(3a+2b\right). Multiply \frac{2b}{\left(3a-2b\right)\left(3a+2b\right)} times \frac{-1}{-1}.
\frac{-2b-3a}{\left(-3a+2b\right)\left(3a+2b\right)}
Since \frac{-2b}{\left(-3a+2b\right)\left(3a+2b\right)} and \frac{3a}{\left(-3a+2b\right)\left(3a+2b\right)} have the same denominator, subtract them by subtracting their numerators.
\frac{-\left(3a+2b\right)}{\left(-3a+2b\right)\left(3a+2b\right)}
Extract the negative sign in -2b-3a.
\frac{-1}{-3a+2b}
Cancel out 3a+2b in both numerator and denominator.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}