Evaluate
\frac{b}{3a^{2}}+\frac{1}{6a}-\frac{5}{2ab}
Factor
\frac{ab-15a+2b^{2}}{6ba^{2}}
Share
Copied to clipboard
\frac{a}{6a^{2}}+\frac{2b}{6a^{2}}-\frac{5}{2ab}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6a and 3a^{2} is 6a^{2}. Multiply \frac{1}{6a} times \frac{a}{a}. Multiply \frac{b}{3a^{2}} times \frac{2}{2}.
\frac{a+2b}{6a^{2}}-\frac{5}{2ab}
Since \frac{a}{6a^{2}} and \frac{2b}{6a^{2}} have the same denominator, add them by adding their numerators.
\frac{\left(a+2b\right)b}{6ba^{2}}-\frac{5\times 3a}{6ba^{2}}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 6a^{2} and 2ab is 6ba^{2}. Multiply \frac{a+2b}{6a^{2}} times \frac{b}{b}. Multiply \frac{5}{2ab} times \frac{3a}{3a}.
\frac{\left(a+2b\right)b-5\times 3a}{6ba^{2}}
Since \frac{\left(a+2b\right)b}{6ba^{2}} and \frac{5\times 3a}{6ba^{2}} have the same denominator, subtract them by subtracting their numerators.
\frac{ab+2b^{2}-15a}{6ba^{2}}
Do the multiplications in \left(a+2b\right)b-5\times 3a.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}