Solve for x
x = \frac{7}{5} = 1\frac{2}{5} = 1.4
Graph
Share
Copied to clipboard
10-10x-\left(12-4x\right)\times 4=\left(5-5x\right)\times 10-\left(6-2x\right)\times 3
Variable x cannot be equal to any of the values 1,3 since division by zero is not defined. Multiply both sides of the equation by 20\left(x-3\right)\left(x-1\right), the least common multiple of 6-2x,5-5x,12-4x,10-10x.
10-10x-\left(48-16x\right)=\left(5-5x\right)\times 10-\left(6-2x\right)\times 3
Use the distributive property to multiply 12-4x by 4.
10-10x-48+16x=\left(5-5x\right)\times 10-\left(6-2x\right)\times 3
To find the opposite of 48-16x, find the opposite of each term.
-38-10x+16x=\left(5-5x\right)\times 10-\left(6-2x\right)\times 3
Subtract 48 from 10 to get -38.
-38+6x=\left(5-5x\right)\times 10-\left(6-2x\right)\times 3
Combine -10x and 16x to get 6x.
-38+6x=50-50x-\left(6-2x\right)\times 3
Use the distributive property to multiply 5-5x by 10.
-38+6x=50-50x-\left(18-6x\right)
Use the distributive property to multiply 6-2x by 3.
-38+6x=50-50x-18+6x
To find the opposite of 18-6x, find the opposite of each term.
-38+6x=32-50x+6x
Subtract 18 from 50 to get 32.
-38+6x=32-44x
Combine -50x and 6x to get -44x.
-38+6x+44x=32
Add 44x to both sides.
-38+50x=32
Combine 6x and 44x to get 50x.
50x=32+38
Add 38 to both sides.
50x=70
Add 32 and 38 to get 70.
x=\frac{70}{50}
Divide both sides by 50.
x=\frac{7}{5}
Reduce the fraction \frac{70}{50} to lowest terms by extracting and canceling out 10.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}