Solve for a
a=\frac{99}{410000000}\approx 0.000000241
Share
Copied to clipboard
\frac{41}{2}a-4.5\times 10^{-6}=4.5\times 10^{-7}
Multiply \frac{1}{6} and 123 to get \frac{41}{2}.
\frac{41}{2}a-4.5\times \frac{1}{1000000}=4.5\times 10^{-7}
Calculate 10 to the power of -6 and get \frac{1}{1000000}.
\frac{41}{2}a-\frac{9}{2000000}=4.5\times 10^{-7}
Multiply 4.5 and \frac{1}{1000000} to get \frac{9}{2000000}.
\frac{41}{2}a-\frac{9}{2000000}=4.5\times \frac{1}{10000000}
Calculate 10 to the power of -7 and get \frac{1}{10000000}.
\frac{41}{2}a-\frac{9}{2000000}=\frac{9}{20000000}
Multiply 4.5 and \frac{1}{10000000} to get \frac{9}{20000000}.
\frac{41}{2}a=\frac{9}{20000000}+\frac{9}{2000000}
Add \frac{9}{2000000} to both sides.
\frac{41}{2}a=\frac{99}{20000000}
Add \frac{9}{20000000} and \frac{9}{2000000} to get \frac{99}{20000000}.
a=\frac{99}{20000000}\times \frac{2}{41}
Multiply both sides by \frac{2}{41}, the reciprocal of \frac{41}{2}.
a=\frac{99}{410000000}
Multiply \frac{99}{20000000} and \frac{2}{41} to get \frac{99}{410000000}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}