Evaluate
\frac{61}{10}=6.1
Factor
\frac{61}{2 \cdot 5} = 6\frac{1}{10} = 6.1
Share
Copied to clipboard
\frac{1}{6}-\frac{\frac{5}{2}-\frac{2}{3}}{\frac{1\times 8+12}{8}}+\frac{20}{3}
Reduce the fraction \frac{10}{4} to lowest terms by extracting and canceling out 2.
\frac{1}{6}-\frac{\frac{15}{6}-\frac{4}{6}}{\frac{1\times 8+12}{8}}+\frac{20}{3}
Least common multiple of 2 and 3 is 6. Convert \frac{5}{2} and \frac{2}{3} to fractions with denominator 6.
\frac{1}{6}-\frac{\frac{15-4}{6}}{\frac{1\times 8+12}{8}}+\frac{20}{3}
Since \frac{15}{6} and \frac{4}{6} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{6}-\frac{\frac{11}{6}}{\frac{1\times 8+12}{8}}+\frac{20}{3}
Subtract 4 from 15 to get 11.
\frac{1}{6}-\frac{\frac{11}{6}}{\frac{8+12}{8}}+\frac{20}{3}
Multiply 1 and 8 to get 8.
\frac{1}{6}-\frac{\frac{11}{6}}{\frac{20}{8}}+\frac{20}{3}
Add 8 and 12 to get 20.
\frac{1}{6}-\frac{\frac{11}{6}}{\frac{5}{2}}+\frac{20}{3}
Reduce the fraction \frac{20}{8} to lowest terms by extracting and canceling out 4.
\frac{1}{6}-\frac{11}{6}\times \frac{2}{5}+\frac{20}{3}
Divide \frac{11}{6} by \frac{5}{2} by multiplying \frac{11}{6} by the reciprocal of \frac{5}{2}.
\frac{1}{6}-\frac{11\times 2}{6\times 5}+\frac{20}{3}
Multiply \frac{11}{6} times \frac{2}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{6}-\frac{22}{30}+\frac{20}{3}
Do the multiplications in the fraction \frac{11\times 2}{6\times 5}.
\frac{1}{6}-\frac{11}{15}+\frac{20}{3}
Reduce the fraction \frac{22}{30} to lowest terms by extracting and canceling out 2.
\frac{5}{30}-\frac{22}{30}+\frac{20}{3}
Least common multiple of 6 and 15 is 30. Convert \frac{1}{6} and \frac{11}{15} to fractions with denominator 30.
\frac{5-22}{30}+\frac{20}{3}
Since \frac{5}{30} and \frac{22}{30} have the same denominator, subtract them by subtracting their numerators.
-\frac{17}{30}+\frac{20}{3}
Subtract 22 from 5 to get -17.
-\frac{17}{30}+\frac{200}{30}
Least common multiple of 30 and 3 is 30. Convert -\frac{17}{30} and \frac{20}{3} to fractions with denominator 30.
\frac{-17+200}{30}
Since -\frac{17}{30} and \frac{200}{30} have the same denominator, add them by adding their numerators.
\frac{183}{30}
Add -17 and 200 to get 183.
\frac{61}{10}
Reduce the fraction \frac{183}{30} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}